Mock sample for your project: Amazon DevOps Guru API

Integrate with "Amazon DevOps Guru API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon DevOps Guru

amazonaws.com

Version: 2020-12-01


Use this API in your project

Start working with "Amazon DevOps Guru API" right away by using this ready-to-use mock sample. API mocking can greatly speed up your application development by removing all the tedious tasks or issues: API key provisioning, account creation, unplanned downtime, etc.
It also helps reduce your dependency on third-party APIs and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Amazon DevOps Guru is a fully managed service that helps you identify anomalous behavior in business critical operational applications. You specify the AWS resources that you want DevOps Guru to cover, then the Amazon CloudWatch metrics and AWS CloudTrail events related to those resources are analyzed. When anomalous behavior is detected, DevOps Guru creates an insight that includes recommendations, related events, and related metrics that can help you improve your operational applications. For more information, see What is Amazon DevOps Guru. You can specify 1 or 2 Amazon Simple Notification Service topics so you are notified every time a new insight is created. You can also enable DevOps Guru to generate an OpsItem in AWS Systems Manager for each insight to help you manage and track your work addressing insights. To learn about the DevOps Guru workflow, see How DevOps Guru works. To learn about DevOps Guru concepts, see Concepts in DevOps Guru.

Other APIs by amazonaws.com

AWS Cost and Usage Report Service

The AWS Cost and Usage Report API enables you to programmatically create, query, and delete AWS Cost and Usage report definitions. AWS Cost and Usage reports track the monthly AWS costs and usage associated with your AWS account. The report contains line items for each unique combination of AWS product, usage type, and operation that your AWS account uses. You can configure the AWS Cost and Usage report to show only the data that you want, using the AWS Cost and Usage API. Service Endpoint The AWS Cost and Usage Report API provides the following endpoint: cur.us-east-1.amazonaws.com

Amazon Augmented AI Runtime

Amazon Augmented AI (Amazon A2I) adds the benefit of human judgment to any machine learning application. When an AI application can't evaluate data with a high degree of confidence, human reviewers can take over. This human review is called a human review workflow. To create and start a human review workflow, you need three resources: a worker task template, a flow definition, and a human loop. For information about these resources and prerequisites for using Amazon A2I, see Get Started with Amazon Augmented AI in the Amazon SageMaker Developer Guide. This API reference includes information about API actions and data types that you can use to interact with Amazon A2I programmatically. Use this guide to: Start a human loop with the StartHumanLoop operation when using Amazon A2I with a custom task type. To learn more about the difference between custom and built-in task types, see Use Task Types. To learn how to start a human loop using this API, see Create and Start a Human Loop for a Custom Task Type in the Amazon SageMaker Developer Guide. Manage your human loops. You can list all human loops that you have created, describe individual human loops, and stop and delete human loops. To learn more, see Monitor and Manage Your Human Loop in the Amazon SageMaker Developer Guide. Amazon A2I integrates APIs from various AWS services to create and start human review workflows for those services. To learn how Amazon A2I uses these APIs, see Use APIs in Amazon A2I in the Amazon SageMaker Developer Guide.

AWS Budgets

The AWS Budgets API enables you to use AWS Budgets to plan your service usage, service costs, and instance reservations. The API reference provides descriptions, syntax, and usage examples for each of the actions and data types for AWS Budgets. Budgets provide you with a way to see the following information: How close your plan is to your budgeted amount or to the free tier limits Your usage-to-date, including how much you've used of your Reserved Instances (RIs) Your current estimated charges from AWS, and how much your predicted usage will accrue in charges by the end of the month How much of your budget has been used AWS updates your budget status several times a day. Budgets track your unblended costs, subscriptions, refunds, and RIs. You can create the following types of budgets: Cost budgets - Plan how much you want to spend on a service. Usage budgets - Plan how much you want to use one or more services. RI utilization budgets - Define a utilization threshold, and receive alerts when your RI usage falls below that threshold. This lets you see if your RIs are unused or under-utilized. RI coverage budgets - Define a coverage threshold, and receive alerts when the number of your instance hours that are covered by RIs fall below that threshold. This lets you see how much of your instance usage is covered by a reservation. Service Endpoint The AWS Budgets API provides the following endpoint: https://budgets.amazonaws.com For information about costs that are associated with the AWS Budgets API, see AWS Cost Management Pricing.

AWS Outposts

AWS Outposts is a fully managed service that extends AWS infrastructure, APIs, and tools to customer premises. By providing local access to AWS managed infrastructure, AWS Outposts enables customers to build and run applications on premises using the same programming interfaces as in AWS Regions, while using local compute and storage resources for lower latency and local data processing needs.

Amazon Detective

Detective uses machine learning and purpose-built visualizations to help you analyze and investigate security issues across your Amazon Web Services (AWS) workloads. Detective automatically extracts time-based events such as login attempts, API calls, and network traffic from AWS CloudTrail and Amazon Virtual Private Cloud (Amazon VPC) flow logs. It also extracts findings detected by Amazon GuardDuty. The Detective API primarily supports the creation and management of behavior graphs. A behavior graph contains the extracted data from a set of member accounts, and is created and managed by an administrator account. Every behavior graph is specific to a Region. You can only use the API to manage graphs that belong to the Region that is associated with the currently selected endpoint. A Detective administrator account can use the Detective API to do the following: Enable and disable Detective. Enabling Detective creates a new behavior graph. View the list of member accounts in a behavior graph. Add member accounts to a behavior graph. Remove member accounts from a behavior graph. A member account can use the Detective API to do the following: View the list of behavior graphs that they are invited to. Accept an invitation to contribute to a behavior graph. Decline an invitation to contribute to a behavior graph. Remove their account from a behavior graph. All API actions are logged as CloudTrail events. See Logging Detective API Calls with CloudTrail. We replaced the term "master account" with the term "administrator account." An administrator account is used to centrally manage multiple accounts. In the case of Detective, the administrator account manages the accounts in their behavior graph.

FinSpace Public API

The FinSpace APIs let you take actions inside the FinSpace environment.

Amazon Personalize

Amazon Personalize is a machine learning service that makes it easy to add individualized recommendations to customers.

AWS Proton

This is the AWS Proton Service API Reference. It provides descriptions, syntax and usage examples for each of the actions and data types for the AWS Proton service. The documentation for each action shows the Query API request parameters and the XML response. Alternatively, you can use the AWS CLI to access an API. For more information, see the AWS Command Line Interface User Guide. The AWS Proton service is a two-pronged automation framework. Administrators create service templates to provide standardized infrastructure and deployment tooling for serverless and container based applications. Developers, in turn, select from the available service templates to automate their application or service deployments. Because administrators define the infrastructure and tooling that AWS Proton deploys and manages, they need permissions to use all of the listed API operations. When developers select a specific infrastructure and tooling set, AWS Proton deploys their applications. To monitor their applications that are running on AWS Proton, developers need permissions to the service create, list, update and delete API operations and the service instance list and update API operations. To learn more about AWS Proton administration, see the AWS Proton Administrator Guide. To learn more about deploying serverless and containerized applications on AWS Proton, see the AWS Proton User Guide. Ensuring Idempotency When you make a mutating API request, the request typically returns a result before the asynchronous workflows of the operation are complete. Operations might also time out or encounter other server issues before they're complete, even if the request already returned a result. This might make it difficult to determine whether the request succeeded. Moreover, you might need to retry the request multiple times to ensure that the operation completes successfully. However, if the original request and the subsequent retries are successful, the operation occurs multiple times. This means that you might create more resources than you intended. Idempotency ensures that an API request action completes no more than one time. With an idempotent request, if the original request action completes successfully, any subsequent retries complete successfully without performing any further actions. However, the result might contain updated information, such as the current creation status. The following lists of APIs are grouped according to methods that ensure idempotency. Idempotent create APIs with a client token The API actions in this list support idempotency with the use of a client token. The corresponding AWS CLI commands also support idempotency using a client token. A client token is a unique, case-sensitive string of up to 64 ASCII characters. To make an idempotent API request using one of these actions, specify a client token in the request. We recommend that you don't reuse the same client token for other API requests. If you don’t provide a client token for these APIs, a default client token is automatically provided by SDKs. Given a request action that has succeeded: If you retry the request using the same client token and the same parameters, the retry succeeds without performing any further actions other than returning the original resource detail data in the response. If you retry the request using the same client token, but one or more of the parameters are different, the retry throws a ValidationException with an IdempotentParameterMismatch error. Client tokens expire eight hours after a request is made. If you retry the request with the expired token, a new resource is created. If the original resource is deleted and you retry the request, a new resource is created. Idempotent create APIs with a client token: CreateEnvironmentTemplateVersion CreateServiceTemplateVersion CreateEnvironmentAccountConnection Idempotent create APIs Given a request action that has succeeded: If you retry the request with an API from this group, and the original resource hasn't been modified, the retry succeeds without performing any further actions other than returning the original resource detail data in the response. If the original resource has been modified, the retry throws a ConflictException. If you retry with different input parameters, the retry throws a ValidationException with an IdempotentParameterMismatch error. Idempotent create APIs: CreateEnvironmentTemplate CreateServiceTemplate CreateEnvironment CreateService Idempotent delete APIs Given a request action that has succeeded: When you retry the request with an API from this group and the resource was deleted, its metadata is returned in the response. If you retry and the resource doesn't exist, the response is empty. In both cases, the retry succeeds. Idempotent delete APIs: DeleteEnvironmentTemplate DeleteEnvironmentTemplateVersion DeleteServiceTemplate DeleteServiceTemplateVersion DeleteEnvironmentAccountConnection Asynchronous idempotent delete APIs Given a request action that has succeeded: If you retry the request with an API from this group, if the original request delete operation status is DELETEINPROGRESS, the retry returns the resource detail data in the response without performing any further actions. If the original request delete operation is complete, a retry returns an empty response. Asynchronous idempotent delete APIs: DeleteEnvironment DeleteService

AWS Resource Groups Tagging API

Resource Groups Tagging API

AWS Certificate Manager

Amazon Web Services Certificate Manager You can use Amazon Web Services Certificate Manager (ACM) to manage SSL/TLS certificates for your Amazon Web Services-based websites and applications. For more information about using ACM, see the Amazon Web Services Certificate Manager User Guide.

Application Auto Scaling

With Application Auto Scaling, you can configure automatic scaling for the following resources: Amazon AppStream 2.0 fleets Amazon Aurora Replicas Amazon Comprehend document classification and entity recognizer endpoints Amazon DynamoDB tables and global secondary indexes throughput capacity Amazon ECS services Amazon ElastiCache for Redis clusters (replication groups) Amazon EMR clusters Amazon Keyspaces (for Apache Cassandra) tables Lambda function provisioned concurrency Amazon Managed Streaming for Apache Kafka broker storage Amazon SageMaker endpoint variants Spot Fleet (Amazon EC2) requests Custom resources provided by your own applications or services API Summary The Application Auto Scaling service API includes three key sets of actions: Register and manage scalable targets - Register Amazon Web Services or custom resources as scalable targets (a resource that Application Auto Scaling can scale), set minimum and maximum capacity limits, and retrieve information on existing scalable targets. Configure and manage automatic scaling - Define scaling policies to dynamically scale your resources in response to CloudWatch alarms, schedule one-time or recurring scaling actions, and retrieve your recent scaling activity history. Suspend and resume scaling - Temporarily suspend and later resume automatic scaling by calling the RegisterScalableTarget API action for any Application Auto Scaling scalable target. You can suspend and resume (individually or in combination) scale-out activities that are triggered by a scaling policy, scale-in activities that are triggered by a scaling policy, and scheduled scaling. To learn more about Application Auto Scaling, including information about granting IAM users required permissions for Application Auto Scaling actions, see the Application Auto Scaling User Guide.

AWS CodeStar Notifications

This AWS CodeStar Notifications API Reference provides descriptions and usage examples of the operations and data types for the AWS CodeStar Notifications API. You can use the AWS CodeStar Notifications API to work with the following objects: Notification rules, by calling the following: CreateNotificationRule, which creates a notification rule for a resource in your account. DeleteNotificationRule, which deletes a notification rule. DescribeNotificationRule, which provides information about a notification rule. ListNotificationRules, which lists the notification rules associated with your account. UpdateNotificationRule, which changes the name, events, or targets associated with a notification rule. Subscribe, which subscribes a target to a notification rule. Unsubscribe, which removes a target from a notification rule. Targets, by calling the following: DeleteTarget, which removes a notification rule target (SNS topic) from a notification rule. ListTargets, which lists the targets associated with a notification rule. Events, by calling the following: ListEventTypes, which lists the event types you can include in a notification rule. Tags, by calling the following: ListTagsForResource, which lists the tags already associated with a notification rule in your account. TagResource, which associates a tag you provide with a notification rule in your account. UntagResource, which removes a tag from a notification rule in your account. For information about how to use AWS CodeStar Notifications, see link in the CodeStarNotifications User Guide.

Other APIs in the same category

Microsoft.ResourceHealth

azure.com
The Resource Health Client.

Amazon Pinpoint SMS and Voice Service

Pinpoint SMS and Voice Messaging public facing APIs

AWS Step Functions

AWS Step Functions AWS Step Functions is a service that lets you coordinate the components of distributed applications and microservices using visual workflows. You can use Step Functions to build applications from individual components, each of which performs a discrete function, or task, allowing you to scale and change applications quickly. Step Functions provides a console that helps visualize the components of your application as a series of steps. Step Functions automatically triggers and tracks each step, and retries steps when there are errors, so your application executes predictably and in the right order every time. Step Functions logs the state of each step, so you can quickly diagnose and debug any issues. Step Functions manages operations and underlying infrastructure to ensure your application is available at any scale. You can run tasks on AWS, your own servers, or any system that has access to AWS. You can access and use Step Functions using the console, the AWS SDKs, or an HTTP API. For more information about Step Functions, see the AWS Step Functions Developer Guide .

AWS Well-Architected Tool

AWS Well-Architected Tool This is the AWS Well-Architected Tool API Reference. The AWS Well-Architected Tool API provides programmatic access to the AWS Well-Architected Tool in the AWS Management Console. For information about the AWS Well-Architected Tool, see the AWS Well-Architected Tool User Guide.

Amazon Transcribe Service

Operations and objects for transcribing speech to text.

Amazon Import/Export Snowball

AWS Snow Family is a petabyte-scale data transport solution that uses secure devices to transfer large amounts of data between your on-premises data centers and Amazon Simple Storage Service (Amazon S3). The Snow commands described here provide access to the same functionality that is available in the AWS Snow Family Management Console, which enables you to create and manage jobs for a Snow device. To transfer data locally with a Snow device, you'll need to use the Snowball Edge client or the Amazon S3 API Interface for Snowball or AWS OpsHub for Snow Family. For more information, see the User Guide.

AWS IoT Events Data

AWS IoT Events monitors your equipment or device fleets for failures or changes in operation, and triggers actions when such events occur. You can use AWS IoT Events Data API commands to send inputs to detectors, list detectors, and view or update a detector's status. For more information, see What is AWS IoT Events? in the AWS IoT Events Developer Guide.

AWS Health APIs and Notifications

AWS Health The AWS Health API provides programmatic access to the AWS Health information that appears in the AWS Personal Health Dashboard. You can use the API operations to get information about AWS Health events that affect your AWS services and resources. You must have a Business or Enterprise Support plan from AWS Support to use the AWS Health API. If you call the AWS Health API from an AWS account that doesn't have a Business or Enterprise Support plan, you receive a SubscriptionRequiredException error. You can use the AWS Health endpoint health.us-east-1.amazonaws.com (HTTPS) to call the AWS Health API operations. AWS Health supports a multi-Region application architecture and has two regional endpoints in an active-passive configuration. You can use the high availability endpoint example to determine which AWS Region is active, so that you can get the latest information from the API. For more information, see Accessing the AWS Health API in the AWS Health User Guide. For authentication of requests, AWS Health uses the Signature Version 4 Signing Process. If your AWS account is part of AWS Organizations, you can use the AWS Health organizational view feature. This feature provides a centralized view of AWS Health events across all accounts in your organization. You can aggregate AWS Health events in real time to identify accounts in your organization that are affected by an operational event or get notified of security vulnerabilities. Use the organizational view API operations to enable this feature and return event information. For more information, see Aggregating AWS Health events in the AWS Health User Guide. When you use the AWS Health API operations to return AWS Health events, see the following recommendations: Use the eventScopeCode parameter to specify whether to return AWS Health events that are public or account-specific. Use pagination to view all events from the response. For example, if you call the DescribeEventsForOrganization operation to get all events in your organization, you might receive several page results. Specify the nextToken in the next request to return more results.

Amazon EC2 Container Registry

Amazon Elastic Container Registry Amazon Elastic Container Registry (Amazon ECR) is a managed container image registry service. Customers can use the familiar Docker CLI, or their preferred client, to push, pull, and manage images. Amazon ECR provides a secure, scalable, and reliable registry for your Docker or Open Container Initiative (OCI) images. Amazon ECR supports private repositories with resource-based permissions using IAM so that specific users or Amazon EC2 instances can access repositories and images. Amazon ECR has service endpoints in each supported Region. For more information, see Amazon ECR endpoints in the Amazon Web Services General Reference.

Route53 Recovery Cluster

Welcome to the Amazon Route 53 Application Recovery Controller API Reference Guide for Recovery Control Data Plane . Recovery control in Route 53 Application Recovery Controller includes extremely reliable routing controls that enable you to recover applications by rerouting traffic, for example, across Availability Zones or AWS Regions. Routing controls are simple on/off switches hosted on a cluster. A cluster is a set of five redundant regional endpoints against which you can execute API calls to update or get the state of routing controls. You use routing controls to failover traffic to recover your application across Availability Zones or Regions. This API guide includes information about how to get and update routing control states in Route 53 Application Recovery Controller. For more information about Route 53 Application Recovery Controller, see the following: You can create clusters, routing controls, and control panels by using the control plane API for Recovery Control. For more information, see Amazon Route 53 Application Recovery Controller Recovery Control API Reference. Route 53 Application Recovery Controller also provides continuous readiness checks to ensure that your applications are scaled to handle failover traffic. For more information about the related API actions, see Amazon Route 53 Application Recovery Controller Recovery Readiness API Reference. For more information about creating resilient applications and preparing for recovery readiness with Route 53 Application Recovery Controller, see the Amazon Route 53 Application Recovery Controller Developer Guide.

AWS Snow Device Management

Amazon Web Services Snow Device Management documentation.

AutomationManagement

azure.com