Mock sample for your project: Amazon Pinpoint SMS and Voice Service API

Integrate with "Amazon Pinpoint SMS and Voice Service API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Pinpoint SMS and Voice Service

amazonaws.com

Version: 2018-09-05


Use this API in your project

Integrate third-party APIs faster by using "Amazon Pinpoint SMS and Voice Service API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
Improve your integration tests by mocking third-party APIs and cover more edge cases: slow response time, random failures, etc.

Description

Pinpoint SMS and Voice Messaging public facing APIs

Other APIs by amazonaws.com

Amazon Personalize

Amazon Personalize is a machine learning service that makes it easy to add individualized recommendations to customers.

Amazon Timestream Write

Amazon Timestream is a fast, scalable, fully managed time series database service that makes it easy to store and analyze trillions of time series data points per day. With Timestream, you can easily store and analyze IoT sensor data to derive insights from your IoT applications. You can analyze industrial telemetry to streamline equipment management and maintenance. You can also store and analyze log data and metrics to improve the performance and availability of your applications. Timestream is built from the ground up to effectively ingest, process, and store time series data. It organizes data to optimize query processing. It automatically scales based on the volume of data ingested and on the query volume to ensure you receive optimal performance while inserting and querying data. As your data grows over time, Timestream’s adaptive query processing engine spans across storage tiers to provide fast analysis while reducing costs.

AWS Resource Access Manager

This is the Resource Access Manager API Reference. This documentation provides descriptions and syntax for each of the actions and data types in RAM. RAM is a service that helps you securely share your Amazon Web Services resources across Amazon Web Services accounts and within your organization or organizational units (OUs) in Organizations. For supported resource types, you can also share resources with IAM roles and IAM users. If you have multiple Amazon Web Services accounts, you can use RAM to share those resources with other accounts. To learn more about RAM, see the following resources: Resource Access Manager product page Resource Access Manager User Guide

AWS Network Manager

Transit Gateway Network Manager (Network Manager) enables you to create a global network, in which you can monitor your AWS and on-premises networks that are built around transit gateways. The Network Manager APIs are supported in the US West (Oregon) Region only. You must specify the us-west-2 Region in all requests made to Network Manager.

Amazon CloudWatch

Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.

AmazonMWAA

Amazon Managed Workflows for Apache Airflow This section contains the Amazon Managed Workflows for Apache Airflow (MWAA) API reference documentation. For more information, see What Is Amazon MWAA?.

Amazon Personalize Events

Amazon Personalize can consume real-time user event data, such as stream or click data, and use it for model training either alone or combined with historical data. For more information see Recording Events.

AWS Proton

This is the AWS Proton Service API Reference. It provides descriptions, syntax and usage examples for each of the actions and data types for the AWS Proton service. The documentation for each action shows the Query API request parameters and the XML response. Alternatively, you can use the AWS CLI to access an API. For more information, see the AWS Command Line Interface User Guide. The AWS Proton service is a two-pronged automation framework. Administrators create service templates to provide standardized infrastructure and deployment tooling for serverless and container based applications. Developers, in turn, select from the available service templates to automate their application or service deployments. Because administrators define the infrastructure and tooling that AWS Proton deploys and manages, they need permissions to use all of the listed API operations. When developers select a specific infrastructure and tooling set, AWS Proton deploys their applications. To monitor their applications that are running on AWS Proton, developers need permissions to the service create, list, update and delete API operations and the service instance list and update API operations. To learn more about AWS Proton administration, see the AWS Proton Administrator Guide. To learn more about deploying serverless and containerized applications on AWS Proton, see the AWS Proton User Guide. Ensuring Idempotency When you make a mutating API request, the request typically returns a result before the asynchronous workflows of the operation are complete. Operations might also time out or encounter other server issues before they're complete, even if the request already returned a result. This might make it difficult to determine whether the request succeeded. Moreover, you might need to retry the request multiple times to ensure that the operation completes successfully. However, if the original request and the subsequent retries are successful, the operation occurs multiple times. This means that you might create more resources than you intended. Idempotency ensures that an API request action completes no more than one time. With an idempotent request, if the original request action completes successfully, any subsequent retries complete successfully without performing any further actions. However, the result might contain updated information, such as the current creation status. The following lists of APIs are grouped according to methods that ensure idempotency. Idempotent create APIs with a client token The API actions in this list support idempotency with the use of a client token. The corresponding AWS CLI commands also support idempotency using a client token. A client token is a unique, case-sensitive string of up to 64 ASCII characters. To make an idempotent API request using one of these actions, specify a client token in the request. We recommend that you don't reuse the same client token for other API requests. If you don’t provide a client token for these APIs, a default client token is automatically provided by SDKs. Given a request action that has succeeded: If you retry the request using the same client token and the same parameters, the retry succeeds without performing any further actions other than returning the original resource detail data in the response. If you retry the request using the same client token, but one or more of the parameters are different, the retry throws a ValidationException with an IdempotentParameterMismatch error. Client tokens expire eight hours after a request is made. If you retry the request with the expired token, a new resource is created. If the original resource is deleted and you retry the request, a new resource is created. Idempotent create APIs with a client token: CreateEnvironmentTemplateVersion CreateServiceTemplateVersion CreateEnvironmentAccountConnection Idempotent create APIs Given a request action that has succeeded: If you retry the request with an API from this group, and the original resource hasn't been modified, the retry succeeds without performing any further actions other than returning the original resource detail data in the response. If the original resource has been modified, the retry throws a ConflictException. If you retry with different input parameters, the retry throws a ValidationException with an IdempotentParameterMismatch error. Idempotent create APIs: CreateEnvironmentTemplate CreateServiceTemplate CreateEnvironment CreateService Idempotent delete APIs Given a request action that has succeeded: When you retry the request with an API from this group and the resource was deleted, its metadata is returned in the response. If you retry and the resource doesn't exist, the response is empty. In both cases, the retry succeeds. Idempotent delete APIs: DeleteEnvironmentTemplate DeleteEnvironmentTemplateVersion DeleteServiceTemplate DeleteServiceTemplateVersion DeleteEnvironmentAccountConnection Asynchronous idempotent delete APIs Given a request action that has succeeded: If you retry the request with an API from this group, if the original request delete operation status is DELETEINPROGRESS, the retry returns the resource detail data in the response without performing any further actions. If the original request delete operation is complete, a retry returns an empty response. Asynchronous idempotent delete APIs: DeleteEnvironment DeleteService

Amazon Rekognition

This is the Amazon Rekognition API reference.

Amazon Lookout for Equipment

Amazon Lookout for Equipment is a machine learning service that uses advanced analytics to identify anomalies in machines from sensor data for use in predictive maintenance.

Amazon Lex Model Building V2

AWS RDS DataService

Amazon RDS Data Service Amazon RDS provides an HTTP endpoint to run SQL statements on an Amazon Aurora Serverless DB cluster. To run these statements, you work with the Data Service API. For more information about the Data Service API, see Using the Data API for Aurora Serverless in the Amazon Aurora User Guide.

Other APIs in the same category

AWS Systems Manager Incident Manager

AWS Systems Manager Incident Manager is an incident management console designed to help users mitigate and recover from incidents affecting their AWS-hosted applications. An incident is any unplanned interruption or reduction in quality of services. Incident Manager increases incident resolution by notifying responders of impact, highlighting relevant troubleshooting data, and providing collaboration tools to get services back up and running. To achieve the primary goal of reducing the time-to-resolution of critical incidents, Incident Manager automates response plans and enables responder team escalation.

AWS Elemental MediaPackage

AWS Elemental MediaPackage

AWS Network Firewall

This is the API Reference for AWS Network Firewall. This guide is for developers who need detailed information about the Network Firewall API actions, data types, and errors. The REST API requires you to handle connection details, such as calculating signatures, handling request retries, and error handling. For general information about using the AWS REST APIs, see AWS APIs. To access Network Firewall using the REST API endpoint: https://network-firewall..amazonaws.com Alternatively, you can use one of the AWS SDKs to access an API that's tailored to the programming language or platform that you're using. For more information, see AWS SDKs. For descriptions of Network Firewall features, including and step-by-step instructions on how to use them through the Network Firewall console, see the Network Firewall Developer Guide. Network Firewall is a stateful, managed, network firewall and intrusion detection and prevention service for Amazon Virtual Private Cloud (Amazon VPC). With Network Firewall, you can filter traffic at the perimeter of your VPC. This includes filtering traffic going to and coming from an internet gateway, NAT gateway, or over VPN or AWS Direct Connect. Network Firewall uses rules that are compatible with Suricata, a free, open source intrusion detection system (IDS) engine. For information about Suricata, see the Suricata website. You can use Network Firewall to monitor and protect your VPC traffic in a number of ways. The following are just a few examples: Allow domains or IP addresses for known AWS service endpoints, such as Amazon S3, and block all other forms of traffic. Use custom lists of known bad domains to limit the types of domain names that your applications can access. Perform deep packet inspection on traffic entering or leaving your VPC. Use stateful protocol detection to filter protocols like HTTPS, regardless of the port used. To enable Network Firewall for your VPCs, you perform steps in both Amazon VPC and in Network Firewall. For information about using Amazon VPC, see Amazon VPC User Guide. To start using Network Firewall, do the following: (Optional) If you don't already have a VPC that you want to protect, create it in Amazon VPC. In Amazon VPC, in each Availability Zone where you want to have a firewall endpoint, create a subnet for the sole use of Network Firewall. In Network Firewall, create stateless and stateful rule groups, to define the components of the network traffic filtering behavior that you want your firewall to have. In Network Firewall, create a firewall policy that uses your rule groups and specifies additional default traffic filtering behavior. In Network Firewall, create a firewall and specify your new firewall policy and VPC subnets. Network Firewall creates a firewall endpoint in each subnet that you specify, with the behavior that's defined in the firewall policy. In Amazon VPC, use ingress routing enhancements to route traffic through the new firewall endpoints.

Amazon Elastic Kubernetes Service

Amazon Elastic Kubernetes Service (Amazon EKS) is a managed service that makes it easy for you to run Kubernetes on Amazon Web Services without needing to stand up or maintain your own Kubernetes control plane. Kubernetes is an open-source system for automating the deployment, scaling, and management of containerized applications. Amazon EKS runs up-to-date versions of the open-source Kubernetes software, so you can use all the existing plugins and tooling from the Kubernetes community. Applications running on Amazon EKS are fully compatible with applications running on any standard Kubernetes environment, whether running in on-premises data centers or public clouds. This means that you can easily migrate any standard Kubernetes application to Amazon EKS without any code modification required.

Amazon Mechanical Turk

Amazon Mechanical Turk API Reference

Application Auto Scaling

With Application Auto Scaling, you can configure automatic scaling for the following resources: Amazon AppStream 2.0 fleets Amazon Aurora Replicas Amazon Comprehend document classification and entity recognizer endpoints Amazon DynamoDB tables and global secondary indexes throughput capacity Amazon ECS services Amazon ElastiCache for Redis clusters (replication groups) Amazon EMR clusters Amazon Keyspaces (for Apache Cassandra) tables Lambda function provisioned concurrency Amazon Managed Streaming for Apache Kafka broker storage Amazon SageMaker endpoint variants Spot Fleet (Amazon EC2) requests Custom resources provided by your own applications or services API Summary The Application Auto Scaling service API includes three key sets of actions: Register and manage scalable targets - Register Amazon Web Services or custom resources as scalable targets (a resource that Application Auto Scaling can scale), set minimum and maximum capacity limits, and retrieve information on existing scalable targets. Configure and manage automatic scaling - Define scaling policies to dynamically scale your resources in response to CloudWatch alarms, schedule one-time or recurring scaling actions, and retrieve your recent scaling activity history. Suspend and resume scaling - Temporarily suspend and later resume automatic scaling by calling the RegisterScalableTarget API action for any Application Auto Scaling scalable target. You can suspend and resume (individually or in combination) scale-out activities that are triggered by a scaling policy, scale-in activities that are triggered by a scaling policy, and scheduled scaling. To learn more about Application Auto Scaling, including information about granting IAM users required permissions for Application Auto Scaling actions, see the Application Auto Scaling User Guide.

Amazon Polly

Amazon Polly is a web service that makes it easy to synthesize speech from text. The Amazon Polly service provides API operations for synthesizing high-quality speech from plain text and Speech Synthesis Markup Language (SSML), along with managing pronunciations lexicons that enable you to get the best results for your application domain.

AWS Signer

AWS Signer is a fully managed code signing service to help you ensure the trust and integrity of your code. AWS Signer supports the following applications: With code signing for AWS Lambda, you can sign AWS Lambda deployment packages. Integrated support is provided for Amazon S3, Amazon CloudWatch, and AWS CloudTrail. In order to sign code, you create a signing profile and then use Signer to sign Lambda zip files in S3. With code signing for IoT, you can sign code for any IoT device that is supported by AWS. IoT code signing is available for Amazon FreeRTOS and AWS IoT Device Management, and is integrated with AWS Certificate Manager (ACM). In order to sign code, you import a third-party code signing certificate using ACM, and use that to sign updates in Amazon FreeRTOS and AWS IoT Device Management. For more information about AWS Signer, see the AWS Signer Developer Guide.

Platform API

The REST API specification for Ably.
IoT IoT provides secure, bi-directional communication between Internet-connected devices (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. You can discover your custom IoT-Data endpoint to communicate with, configure rules for data processing and integration with other services, organize resources associated with each device (Registry), configure logging, and create and manage policies and credentials to authenticate devices. The service endpoints that expose this API are listed in Amazon Web Services IoT Core Endpoints and Quotas. You must use the endpoint for the region that has the resources you want to access. The service name used by Amazon Web Services Signature Version 4 to sign the request is: execute-api. For more information about how IoT works, see the Developer Guide. For information about how to use the credentials provider for IoT, see Authorizing Direct Calls to Amazon Web Services Services.

Auto Scaling

Amazon EC2 Auto Scaling Amazon EC2 Auto Scaling is designed to automatically launch or terminate EC2 instances based on user-defined scaling policies, scheduled actions, and health checks. For more information about Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling User Guide. For information about granting IAM users required permissions for calls to Amazon EC2 Auto Scaling, see Granting IAM users required permissions for Amazon EC2 Auto Scaling resources in the Amazon EC2 Auto Scaling API Reference.

Amazon Kinesis Video Signaling Channels

Kinesis Video Streams Signaling Service is a intermediate service that establishes a communication channel for discovering peers, transmitting offers and answers in order to establish peer-to-peer connection in webRTC technology.