Mock sample for your project: Managed Streaming for Kafka API

Integrate with "Managed Streaming for Kafka API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Managed Streaming for Kafka

amazonaws.com

Version: 2018-11-14


Use this API in your project

Integrate third-party APIs faster by using "Managed Streaming for Kafka API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
Improve your integration tests by mocking third-party APIs and cover more edge cases: slow response time, random failures, etc.

Description

The operations for managing an Amazon MSK cluster.

Other APIs by amazonaws.com

AWS Identity and Access Management

Identity and Access Management Identity and Access Management (IAM) is a web service for securely controlling access to Amazon Web Services services. With IAM, you can centrally manage users, security credentials such as access keys, and permissions that control which Amazon Web Services resources users and applications can access. For more information about IAM, see Identity and Access Management (IAM) and the Identity and Access Management User Guide.

Amazon SageMaker Service

Provides APIs for creating and managing Amazon SageMaker resources. Other Resources: Amazon SageMaker Developer Guide Amazon Augmented AI Runtime API Reference

AWS Service Catalog App Registry

Amazon Web Services Service Catalog AppRegistry enables organizations to understand the application context of their Amazon Web Services resources. AppRegistry provides a repository of your applications, their resources, and the application metadata that you use within your enterprise.

Amazon Lex Runtime V2

AWS Batch

Batch Using Batch, you can run batch computing workloads on the Cloud. Batch computing is a common means for developers, scientists, and engineers to access large amounts of compute resources. Batch uses the advantages of this computing workload to remove the undifferentiated heavy lifting of configuring and managing required infrastructure. At the same time, it also adopts a familiar batch computing software approach. Given these advantages, Batch can help you to efficiently provision resources in response to jobs submitted, thus effectively helping you to eliminate capacity constraints, reduce compute costs, and deliver your results more quickly. As a fully managed service, Batch can run batch computing workloads of any scale. Batch automatically provisions compute resources and optimizes workload distribution based on the quantity and scale of your specific workloads. With Batch, there's no need to install or manage batch computing software. This means that you can focus your time and energy on analyzing results and solving your specific problems.

Synthetics

Amazon CloudWatch Synthetics You can use Amazon CloudWatch Synthetics to continually monitor your services. You can create and manage canaries, which are modular, lightweight scripts that monitor your endpoints and APIs from the outside-in. You can set up your canaries to run 24 hours a day, once per minute. The canaries help you check the availability and latency of your web services and troubleshoot anomalies by investigating load time data, screenshots of the UI, logs, and metrics. The canaries seamlessly integrate with CloudWatch ServiceLens to help you trace the causes of impacted nodes in your applications. For more information, see Using ServiceLens to Monitor the Health of Your Applications in the Amazon CloudWatch User Guide. Before you create and manage canaries, be aware of the security considerations. For more information, see Security Considerations for Synthetics Canaries.

Amazon CloudSearch

Amazon CloudSearch Configuration Service You use the Amazon CloudSearch configuration service to create, configure, and manage search domains. Configuration service requests are submitted using the AWS Query protocol. AWS Query requests are HTTP or HTTPS requests submitted via HTTP GET or POST with a query parameter named Action. The endpoint for configuration service requests is region-specific: cloudsearch. region.amazonaws.com. For example, cloudsearch.us-east-1.amazonaws.com. For a current list of supported regions and endpoints, see Regions and Endpoints.

Amazon Augmented AI Runtime

Amazon Augmented AI (Amazon A2I) adds the benefit of human judgment to any machine learning application. When an AI application can't evaluate data with a high degree of confidence, human reviewers can take over. This human review is called a human review workflow. To create and start a human review workflow, you need three resources: a worker task template, a flow definition, and a human loop. For information about these resources and prerequisites for using Amazon A2I, see Get Started with Amazon Augmented AI in the Amazon SageMaker Developer Guide. This API reference includes information about API actions and data types that you can use to interact with Amazon A2I programmatically. Use this guide to: Start a human loop with the StartHumanLoop operation when using Amazon A2I with a custom task type. To learn more about the difference between custom and built-in task types, see Use Task Types. To learn how to start a human loop using this API, see Create and Start a Human Loop for a Custom Task Type in the Amazon SageMaker Developer Guide. Manage your human loops. You can list all human loops that you have created, describe individual human loops, and stop and delete human loops. To learn more, see Monitor and Manage Your Human Loop in the Amazon SageMaker Developer Guide. Amazon A2I integrates APIs from various AWS services to create and start human review workflows for those services. To learn how Amazon A2I uses these APIs, see Use APIs in Amazon A2I in the Amazon SageMaker Developer Guide.

AWS Migration Hub

The AWS Migration Hub API methods help to obtain server and application migration status and integrate your resource-specific migration tool by providing a programmatic interface to Migration Hub. Remember that you must set your AWS Migration Hub home region before you call any of these APIs, or a HomeRegionNotSetException error will be returned. Also, you must make the API calls while in your home region.

AWS CodeCommit

AWS CodeCommit This is the AWS CodeCommit API Reference. This reference provides descriptions of the operations and data types for AWS CodeCommit API along with usage examples. You can use the AWS CodeCommit API to work with the following objects: Repositories, by calling the following: BatchGetRepositories, which returns information about one or more repositories associated with your AWS account. CreateRepository, which creates an AWS CodeCommit repository. DeleteRepository, which deletes an AWS CodeCommit repository. GetRepository, which returns information about a specified repository. ListRepositories, which lists all AWS CodeCommit repositories associated with your AWS account. UpdateRepositoryDescription, which sets or updates the description of the repository. UpdateRepositoryName, which changes the name of the repository. If you change the name of a repository, no other users of that repository can access it until you send them the new HTTPS or SSH URL to use. Branches, by calling the following: CreateBranch, which creates a branch in a specified repository. DeleteBranch, which deletes the specified branch in a repository unless it is the default branch. GetBranch, which returns information about a specified branch. ListBranches, which lists all branches for a specified repository. UpdateDefaultBranch, which changes the default branch for a repository. Files, by calling the following: DeleteFile, which deletes the content of a specified file from a specified branch. GetBlob, which returns the base-64 encoded content of an individual Git blob object in a repository. GetFile, which returns the base-64 encoded content of a specified file. GetFolder, which returns the contents of a specified folder or directory. PutFile, which adds or modifies a single file in a specified repository and branch. Commits, by calling the following: BatchGetCommits, which returns information about one or more commits in a repository. CreateCommit, which creates a commit for changes to a repository. GetCommit, which returns information about a commit, including commit messages and author and committer information. GetDifferences, which returns information about the differences in a valid commit specifier (such as a branch, tag, HEAD, commit ID, or other fully qualified reference). Merges, by calling the following: BatchDescribeMergeConflicts, which returns information about conflicts in a merge between commits in a repository. CreateUnreferencedMergeCommit, which creates an unreferenced commit between two branches or commits for the purpose of comparing them and identifying any potential conflicts. DescribeMergeConflicts, which returns information about merge conflicts between the base, source, and destination versions of a file in a potential merge. GetMergeCommit, which returns information about the merge between a source and destination commit. GetMergeConflicts, which returns information about merge conflicts between the source and destination branch in a pull request. GetMergeOptions, which returns information about the available merge options between two branches or commit specifiers. MergeBranchesByFastForward, which merges two branches using the fast-forward merge option. MergeBranchesBySquash, which merges two branches using the squash merge option. MergeBranchesByThreeWay, which merges two branches using the three-way merge option. Pull requests, by calling the following: CreatePullRequest, which creates a pull request in a specified repository. CreatePullRequestApprovalRule, which creates an approval rule for a specified pull request. DeletePullRequestApprovalRule, which deletes an approval rule for a specified pull request. DescribePullRequestEvents, which returns information about one or more pull request events. EvaluatePullRequestApprovalRules, which evaluates whether a pull request has met all the conditions specified in its associated approval rules. GetCommentsForPullRequest, which returns information about comments on a specified pull request. GetPullRequest, which returns information about a specified pull request. GetPullRequestApprovalStates, which returns information about the approval states for a specified pull request. GetPullRequestOverrideState, which returns information about whether approval rules have been set aside (overriden) for a pull request, and if so, the Amazon Resource Name (ARN) of the user or identity that overrode the rules and their requirements for the pull request. ListPullRequests, which lists all pull requests for a repository. MergePullRequestByFastForward, which merges the source destination branch of a pull request into the specified destination branch for that pull request using the fast-forward merge option. MergePullRequestBySquash, which merges the source destination branch of a pull request into the specified destination branch for that pull request using the squash merge option. MergePullRequestByThreeWay. which merges the source destination branch of a pull request into the specified destination branch for that pull request using the three-way merge option. OverridePullRequestApprovalRules, which sets aside all approval rule requirements for a pull request. PostCommentForPullRequest, which posts a comment to a pull request at the specified line, file, or request. UpdatePullRequestApprovalRuleContent, which updates the structure of an approval rule for a pull request. UpdatePullRequestApprovalState, which updates the state of an approval on a pull request. UpdatePullRequestDescription, which updates the description of a pull request. UpdatePullRequestStatus, which updates the status of a pull request. UpdatePullRequestTitle, which updates the title of a pull request. Approval rule templates, by calling the following: AssociateApprovalRuleTemplateWithRepository, which associates a template with a specified repository. After the template is associated with a repository, AWS CodeCommit creates approval rules that match the template conditions on every pull request created in the specified repository. BatchAssociateApprovalRuleTemplateWithRepositories, which associates a template with one or more specified repositories. After the template is associated with a repository, AWS CodeCommit creates approval rules that match the template conditions on every pull request created in the specified repositories. BatchDisassociateApprovalRuleTemplateFromRepositories, which removes the association between a template and specified repositories so that approval rules based on the template are not automatically created when pull requests are created in those repositories. CreateApprovalRuleTemplate, which creates a template for approval rules that can then be associated with one or more repositories in your AWS account. DeleteApprovalRuleTemplate, which deletes the specified template. It does not remove approval rules on pull requests already created with the template. DisassociateApprovalRuleTemplateFromRepository, which removes the association between a template and a repository so that approval rules based on the template are not automatically created when pull requests are created in the specified repository. GetApprovalRuleTemplate, which returns information about an approval rule template. ListApprovalRuleTemplates, which lists all approval rule templates in the AWS Region in your AWS account. ListAssociatedApprovalRuleTemplatesForRepository, which lists all approval rule templates that are associated with a specified repository. ListRepositoriesForApprovalRuleTemplate, which lists all repositories associated with the specified approval rule template. UpdateApprovalRuleTemplateDescription, which updates the description of an approval rule template. UpdateApprovalRuleTemplateName, which updates the name of an approval rule template. UpdateApprovalRuleTemplateContent, which updates the content of an approval rule template. Comments in a repository, by calling the following: DeleteCommentContent, which deletes the content of a comment on a commit in a repository. GetComment, which returns information about a comment on a commit. GetCommentReactions, which returns information about emoji reactions to comments. GetCommentsForComparedCommit, which returns information about comments on the comparison between two commit specifiers in a repository. PostCommentForComparedCommit, which creates a comment on the comparison between two commit specifiers in a repository. PostCommentReply, which creates a reply to a comment. PutCommentReaction, which creates or updates an emoji reaction to a comment. UpdateComment, which updates the content of a comment on a commit in a repository. Tags used to tag resources in AWS CodeCommit (not Git tags), by calling the following: ListTagsForResource, which gets information about AWS tags for a specified Amazon Resource Name (ARN) in AWS CodeCommit. TagResource, which adds or updates tags for a resource in AWS CodeCommit. UntagResource, which removes tags for a resource in AWS CodeCommit. Triggers, by calling the following: GetRepositoryTriggers, which returns information about triggers configured for a repository. PutRepositoryTriggers, which replaces all triggers for a repository and can be used to create or delete triggers. TestRepositoryTriggers, which tests the functionality of a repository trigger by sending data to the trigger target. For information about how to use AWS CodeCommit, see the AWS CodeCommit User Guide.
This is AWS WAF Classic documentation. For more information, see AWS WAF Classic in the developer guide. For the latest version of AWS WAF, use the AWS WAFV2 API and see the AWS WAF Developer Guide. With the latest version, AWS WAF has a single set of endpoints for regional and global use. This is the AWS WAF Classic API Reference for using AWS WAF Classic with Amazon CloudFront. The AWS WAF Classic actions and data types listed in the reference are available for protecting Amazon CloudFront distributions. You can use these actions and data types via the endpoint waf.amazonaws.com. This guide is for developers who need detailed information about the AWS WAF Classic API actions, data types, and errors. For detailed information about AWS WAF Classic features and an overview of how to use the AWS WAF Classic API, see the AWS WAF Classic in the developer guide.

AWS WAF Regional

This is AWS WAF Classic Regional documentation. For more information, see AWS WAF Classic in the developer guide. For the latest version of AWS WAF, use the AWS WAFV2 API and see the AWS WAF Developer Guide. With the latest version, AWS WAF has a single set of endpoints for regional and global use. This is the AWS WAF Regional Classic API Reference for using AWS WAF Classic with the AWS resources, Elastic Load Balancing (ELB) Application Load Balancers and API Gateway APIs. The AWS WAF Classic actions and data types listed in the reference are available for protecting Elastic Load Balancing (ELB) Application Load Balancers and API Gateway APIs. You can use these actions and data types by means of the endpoints listed in AWS Regions and Endpoints. This guide is for developers who need detailed information about the AWS WAF Classic API actions, data types, and errors. For detailed information about AWS WAF Classic features and an overview of how to use the AWS WAF Classic API, see the AWS WAF Classic in the developer guide.

Other APIs in the same category

SqlManagementClient

azure.com
The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.

ServiceBusManagementClient

azure.com
Azure Service Bus client

RecoveryServicesBackupClient

azure.com

SqlManagementClient

azure.com
The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.

Azure SQL Database Import/Export spec

azure.com
Provides create and read functionality for Import/Export operations on Azure SQL databases.

TimeSeriesInsightsClient

azure.com
Time Series Insights environment data plane client for PAYG (Preview L1 SKU) environments.

Microsoft.Support

azure.com
Microsoft Azure Support Resource Provider.

Linode API

Introduction
The Linode API provides the ability to programmatically manage the full
range of Linode products and services.
This reference is designed to assist application developers and system
administrators. Each endpoint includes descriptions, request syntax, and
examples using standard HTTP requests. Response data is returned in JSON
format.
This document was generated from our OpenAPI Specification. See the
OpenAPI website for more information.
Download the Linode OpenAPI Specification.
Changelog
View our Changelog to see release
notes on all changes made to our API.
Access and Authentication
Some endpoints are publicly accessible without requiring authentication.
All endpoints affecting your Account, however, require either a Personal
Access Token or OAuth authentication (when using third-party
applications).
Personal Access Token
The easiest way to access the API is with a Personal Access Token (PAT)
generated from the
Linode Cloud Manager or
the Create Personal Access Token endpoint.
All scopes for the OAuth security model (defined below) apply to this
security model as well.
Authentication
| Security Scheme Type: | HTTP |
|-----------------------|------|
| HTTP Authorization Scheme | bearer |
OAuth
If you only need to access the Linode API for personal use,
we recommend that you create a personal access token.
If you're designing an application that can authenticate with an arbitrary Linode user, then
you should use the OAuth 2.0 workflows presented in this section.
For a more detailed example of an OAuth 2.0 implementation, see our guide on How to Create an OAuth App with the Linode Python API Library.
Before you implement OAuth in your application, you first need to create an OAuth client. You can do this with the Linode API or via the Cloud Manager:
When creating the client, you'll supply a label and a redirect_uri (referred to as the Callback URL in the Cloud Manager).
The response from this endpoint will give you a client_id and a secret.
Clients can be public or private, and are private by default. You can choose to make the client public when it is created.
A private client is used with applications which can securely store the client secret (that is, the secret returned to you when you first created the client). For example, an application running on a secured server that only the developer has access to would use a private OAuth client. This is also called a confidential client in some OAuth documentation.
A public client is used with applications where the client secret is not guaranteed to be secure. For example, a native app running on a user's computer may not be able to keep the client secret safe, as a user could potentially inspect the source of the application. So, native apps or apps that run in a user's browser should use a public client.
Public and private clients follow different workflows, as described below.
OAuth Workflow
The OAuth workflow is a series of exchanges between your third-party app and Linode. The workflow is used
to authenticate a user before an application can start making API calls on the user's behalf.
Notes:
With respect to the diagram in section 1.2 of RFC 6749, login.linode.com (referred to in this section as the login server)
is the Resource Owner and the Authorization Server; api.linode.com (referred to here as the api server) is the Resource Server.
The OAuth spec refers to the private and public workflows listed below as the authorization code flow and implicit flow.
| PRIVATE WORKFLOW | PUBLIC WORKFLOW |
|------------------|------------------|
| 1. The user visits the application's website and is directed to login with Linode. | 1. The user visits the application's website and is directed to login with Linode. |
| 2. Your application then redirects the user to Linode's login server with the client application's clientid and requested OAuth scope, which should appear in the URL of the login page. | 2. Your application then redirects the user to Linode's login server with the client application's clientid and requested OAuth scope, which should appear in the URL of the login page. |
| 3. The user logs into the login server with their username and password. | 3. The user logs into the login server with their username and password. |
| 4. The login server redirects the user to the specificed redirect URL with a temporary authorization code (exchange code) in the URL. | 4. The login server redirects the user back to your application with an OAuth accesstoken embedded in the redirect URL's hash. This is temporary and expires in two hours. No refreshtoken is issued. Therefore, once the access_token expires, a new one will need to be issued by having the user log in again. |
| 5. The application issues a POST request (see below) to the login server with the exchange code, clientid, and the client application's clientsecret. | |
| 6. The login server responds to the client application with a new OAuth accesstoken and refreshtoken. The access_token is set to expire in two hours. | |
| 7. The refreshtoken can be used by contacting the login server with the clientid, clientsecret, granttype, and refreshtoken to get a new OAuth accesstoken and refreshtoken. The new accesstoken is good for another two hours, and the new refresh_token, can be used to extend the session again by this same method. | |
OAuth Private Workflow - Additional Details
The following information expands on steps 5 through 7 of the private workflow:
Once the user has logged into Linode and you have received an exchange code,
you will need to trade that exchange code for an accesstoken and refreshtoken. You
do this by making an HTTP POST request to the following address:
Rate Limiting
With the Linode API, you can make up to 1,600 general API requests every two minutes per user as
determined by IP adddress or by OAuth token. Additionally, there are endpoint specfic limits defined below.
Note: There may be rate limiting applied at other levels outside of the API, for example, at the load balancer.
/stats endpoints have their own dedicated limits of 100 requests per minute per user.
These endpoints are:
View Linode Statistics
View Linode Statistics (year/month)
View NodeBalancer Statistics
List Managed Stats
Object Storage endpoints have a dedicated limit of 750 requests per second per user.
The Object Storage endpoints are:
Object Storage Endpoints
Opening Support Tickets has a dedicated limit of 2 requests per minute per user.
That endpoint is:
Open Support Ticket
Accepting Service Transfers has a dedicated limit of 2 requests per minute per user.
That endpoint is:
Service Transfer Accept
CLI (Command Line Interface)
The Linode CLI allows you to easily
work with the API using intuitive and simple syntax. It requires a
Personal Access Token
for authentication, and gives you access to all of the features and functionality
of the Linode API that are documented here with CLI examples.
Endpoints that do not have CLI examples are currently unavailable through the CLI, but
can be accessed via other methods such as Shell commands and other third-party applications.

Security Center

azure.com
API spec for Microsoft.Security (Azure Security Center) resource provider

DeploymentAdminClient

azure.com
Deployment Admin Client.

AWS Route53 Recovery Control Config

Recovery Control Configuration API Reference for Amazon Route 53 Application Recovery Controller

StreamAnalyticsManagementClient

azure.com