Mock sample for your project: AWS IoT Wireless API

Integrate with "AWS IoT Wireless API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS IoT Wireless

amazonaws.com

Version: 2020-11-22


Use this API in your project

Integrate third-party APIs faster by using "AWS IoT Wireless API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

AWS IoT Wireless API documentation

Other APIs by amazonaws.com

Amazon WorkMail Message Flow

The WorkMail Message Flow API provides access to email messages as they are being sent and received by a WorkMail organization.

AWS Identity and Access Management

Identity and Access Management Identity and Access Management (IAM) is a web service for securely controlling access to Amazon Web Services services. With IAM, you can centrally manage users, security credentials such as access keys, and permissions that control which Amazon Web Services resources users and applications can access. For more information about IAM, see Identity and Access Management (IAM) and the Identity and Access Management User Guide.

AWS IoT Greengrass V2

IoT Greengrass brings local compute, messaging, data management, sync, and ML inference capabilities to edge devices. This enables devices to collect and analyze data closer to the source of information, react autonomously to local events, and communicate securely with each other on local networks. Local devices can also communicate securely with Amazon Web Services IoT Core and export IoT data to the Amazon Web Services Cloud. IoT Greengrass developers can use Lambda functions and components to create and deploy applications to fleets of edge devices for local operation. IoT Greengrass Version 2 provides a new major version of the IoT Greengrass Core software, new APIs, and a new console. Use this API reference to learn how to use the IoT Greengrass V2 API operations to manage components, manage deployments, and core devices. For more information, see What is IoT Greengrass? in the IoT Greengrass V2 Developer Guide.

AWS IoT SiteWise

Welcome to the IoT SiteWise API Reference. IoT SiteWise is an Amazon Web Services service that connects Industrial Internet of Things (IIoT) devices to the power of the Amazon Web Services Cloud. For more information, see the IoT SiteWise User Guide. For information about IoT SiteWise quotas, see Quotas in the IoT SiteWise User Guide.

AWS Performance Insights

Amazon RDS Performance Insights Amazon RDS Performance Insights enables you to monitor and explore different dimensions of database load based on data captured from a running DB instance. The guide provides detailed information about Performance Insights data types, parameters and errors. When Performance Insights is enabled, the Amazon RDS Performance Insights API provides visibility into the performance of your DB instance. Amazon CloudWatch provides the authoritative source for AWS service-vended monitoring metrics. Performance Insights offers a domain-specific view of DB load. DB load is measured as Average Active Sessions. Performance Insights provides the data to API consumers as a two-dimensional time-series dataset. The time dimension provides DB load data for each time point in the queried time range. Each time point decomposes overall load in relation to the requested dimensions, measured at that time point. Examples include SQL, Wait event, User, and Host. To learn more about Performance Insights and Amazon Aurora DB instances, go to the Amazon Aurora User Guide. To learn more about Performance Insights and Amazon RDS DB instances, go to the Amazon RDS User Guide.

AmazonMWAA

Amazon Managed Workflows for Apache Airflow This section contains the Amazon Managed Workflows for Apache Airflow (MWAA) API reference documentation. For more information, see What Is Amazon MWAA?.

AWS IoT Events Data

AWS IoT Events monitors your equipment or device fleets for failures or changes in operation, and triggers actions when such events occur. You can use AWS IoT Events Data API commands to send inputs to detectors, list detectors, and view or update a detector's status. For more information, see What is AWS IoT Events? in the AWS IoT Events Developer Guide.

Amazon FSx

Amazon FSx is a fully managed service that makes it easy for storage and application administrators to launch and use shared file storage.

Amazon Pinpoint

Doc Engage API - Amazon Pinpoint API

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

AWS Elemental MediaLive

API for AWS Elemental MediaLive

Amazon Mechanical Turk

Amazon Mechanical Turk API Reference

Other APIs in the same category

Cosmos DB

azure.com
Azure Cosmos DB Database Service Resource Provider REST API

FabricAdminClient

azure.com
Storage operation results.

AutomationManagement

azure.com

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for Components.

Amazon Simple Notification Service

Amazon Simple Notification Service Amazon Simple Notification Service (Amazon SNS) is a web service that enables you to build distributed web-enabled applications. Applications can use Amazon SNS to easily push real-time notification messages to interested subscribers over multiple delivery protocols. For more information about this product see the Amazon SNS product page. For detailed information about Amazon SNS features and their associated API calls, see the Amazon SNS Developer Guide. For information on the permissions you need to use this API, see Identity and access management in Amazon SNS in the Amazon SNS Developer Guide. We also provide SDKs that enable you to access Amazon SNS from your preferred programming language. The SDKs contain functionality that automatically takes care of tasks such as: cryptographically signing your service requests, retrying requests, and handling error responses. For a list of available SDKs, go to Tools for Amazon Web Services.

Amazon Chime

The Amazon Chime API (application programming interface) is designed for developers to perform key tasks, such as creating and managing Amazon Chime accounts, users, and Voice Connectors. This guide provides detailed information about the Amazon Chime API, including operations, types, inputs and outputs, and error codes. It also includes some server-side API actions to use with the Amazon Chime SDK. For more information about the Amazon Chime SDK, see Using the Amazon Chime SDK in the Amazon Chime Developer Guide. You can use an AWS SDK, the AWS Command Line Interface (AWS CLI), or the REST API to make API calls. We recommend using an AWS SDK or the AWS CLI. Each API operation includes links to information about using it with a language-specific AWS SDK or the AWS CLI. Using an AWS SDK You don't need to write code to calculate a signature for request authentication. The SDK clients authenticate your requests by using access keys that you provide. For more information about AWS SDKs, see the AWS Developer Center. Using the AWS CLI Use your access keys with the AWS CLI to make API calls. For information about setting up the AWS CLI, see Installing the AWS Command Line Interface in the AWS Command Line Interface User Guide. For a list of available Amazon Chime commands, see the Amazon Chime commands in the AWS CLI Command Reference. Using REST APIs If you use REST to make API calls, you must authenticate your request by providing a signature. Amazon Chime supports signature version 4. For more information, see Signature Version 4 Signing Process in the Amazon Web Services General Reference. When making REST API calls, use the service name chime and REST endpoint https://service.chime.aws.amazon.com. Administrative permissions are controlled using AWS Identity and Access Management (IAM). For more information, see Identity and Access Management for Amazon Chime in the Amazon Chime Administration Guide.

SubscriptionsManagementClient

azure.com
The Admin Subscriptions Management Client.

Amazon Kinesis Video Streams

AWS Identity and Access Management

Identity and Access Management Identity and Access Management (IAM) is a web service for securely controlling access to Amazon Web Services services. With IAM, you can centrally manage users, security credentials such as access keys, and permissions that control which Amazon Web Services resources users and applications can access. For more information about IAM, see Identity and Access Management (IAM) and the Identity and Access Management User Guide.

Amazon CloudWatch

Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.

FabricAdminClient

azure.com
The Admin Fabric Management Client.

AWS Cloud Map

Cloud Map With Cloud Map, you can configure public DNS, private DNS, or HTTP namespaces that your microservice applications run in. When an instance becomes available, you can call the Cloud Map API to register the instance with Cloud Map. For public or private DNS namespaces, Cloud Map automatically creates DNS records and an optional health check. Clients that submit public or private DNS queries, or HTTP requests, for the service receive an answer that contains up to eight healthy records.