Mock sample for your project: AWS Global Accelerator API

Integrate with "AWS Global Accelerator API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS Global Accelerator

amazonaws.com

Version: 2018-08-08


Use this API in your project

Start working with "AWS Global Accelerator API" right away by using this ready-to-use mock sample. API mocking can greatly speed up your application development by removing all the tedious tasks or issues: API key provisioning, account creation, unplanned downtime, etc.
It also helps reduce your dependency on third-party APIs and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

AWS Global Accelerator This is the AWS Global Accelerator API Reference. This guide is for developers who need detailed information about AWS Global Accelerator API actions, data types, and errors. For more information about Global Accelerator features, see the AWS Global Accelerator Developer Guide. AWS Global Accelerator is a service in which you create accelerators to improve the performance of your applications for local and global users. Depending on the type of accelerator you choose, you can gain additional benefits. By using a standard accelerator, you can improve availability of your internet applications that are used by a global audience. With a standard accelerator, Global Accelerator directs traffic to optimal endpoints over the AWS global network. For other scenarios, you might choose a custom routing accelerator. With a custom routing accelerator, you can use application logic to directly map one or more users to a specific endpoint among many endpoints. Global Accelerator is a global service that supports endpoints in multiple AWS Regions but you must specify the US West (Oregon) Region to create or update accelerators. By default, Global Accelerator provides you with two static IP addresses that you associate with your accelerator. With a standard accelerator, instead of using the IP addresses that Global Accelerator provides, you can configure these entry points to be IPv4 addresses from your own IP address ranges that you bring to Global Accelerator. The static IP addresses are anycast from the AWS edge network. For a standard accelerator, they distribute incoming application traffic across multiple endpoint resources in multiple AWS Regions, which increases the availability of your applications. Endpoints for standard accelerators can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses that are located in one AWS Region or multiple Regions. For custom routing accelerators, you map traffic that arrives to the static IP addresses to specific Amazon EC2 servers in endpoints that are virtual private cloud (VPC) subnets. The static IP addresses remain assigned to your accelerator for as long as it exists, even if you disable the accelerator and it no longer accepts or routes traffic. However, when you delete an accelerator, you lose the static IP addresses that are assigned to it, so you can no longer route traffic by using them. You can use IAM policies like tag-based permissions with Global Accelerator to limit the users who have permissions to delete an accelerator. For more information, see Tag-based policies. For standard accelerators, Global Accelerator uses the AWS global network to route traffic to the optimal regional endpoint based on health, client location, and policies that you configure. The service reacts instantly to changes in health or configuration to ensure that internet traffic from clients is always directed to healthy endpoints. For a list of the AWS Regions where Global Accelerator and other services are currently supported, see the AWS Region Table. AWS Global Accelerator includes the following components: Static IP addresses Global Accelerator provides you with a set of two static IP addresses that are anycast from the AWS edge network. If you bring your own IP address range to AWS (BYOIP) to use with a standard accelerator, you can instead assign IP addresses from your own pool to use with your accelerator. For more information, see Bring your own IP addresses (BYOIP) in AWS Global Accelerator. The IP addresses serve as single fixed entry points for your clients. If you already have Elastic Load Balancing load balancers, Amazon EC2 instances, or Elastic IP address resources set up for your applications, you can easily add those to a standard accelerator in Global Accelerator. This allows Global Accelerator to use static IP addresses to access the resources. The static IP addresses remain assigned to your accelerator for as long as it exists, even if you disable the accelerator and it no longer accepts or routes traffic. However, when you delete an accelerator, you lose the static IP addresses that are assigned to it, so you can no longer route traffic by using them. You can use IAM policies like tag-based permissions with Global Accelerator to delete an accelerator. For more information, see Tag-based policies. Accelerator An accelerator directs traffic to endpoints over the AWS global network to improve the performance of your internet applications. Each accelerator includes one or more listeners. There are two types of accelerators: A standard accelerator directs traffic to the optimal AWS endpoint based on several factors, including the user’s location, the health of the endpoint, and the endpoint weights that you configure. This improves the availability and performance of your applications. Endpoints can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses. A custom routing accelerator directs traffic to one of possibly thousands of Amazon EC2 instances running in a single or multiple virtual private clouds (VPCs). With custom routing, listener ports are mapped to statically associate port ranges with VPC subnets, which allows Global Accelerator to determine an EC2 instance IP address at the time of connection. By default, all port mapping destinations in a VPC subnet can't receive traffic. You can choose to configure all destinations in the subnet to receive traffic, or to specify individual port mappings that can receive traffic. For more information, see Types of accelerators. DNS name Global Accelerator assigns each accelerator a default Domain Name System (DNS) name, similar to a1234567890abcdef.awsglobalaccelerator.com, that points to the static IP addresses that Global Accelerator assigns to you or that you choose from your own IP address range. Depending on the use case, you can use your accelerator's static IP addresses or DNS name to route traffic to your accelerator, or set up DNS records to route traffic using your own custom domain name. Network zone A network zone services the static IP addresses for your accelerator from a unique IP subnet. Similar to an AWS Availability Zone, a network zone is an isolated unit with its own set of physical infrastructure. When you configure an accelerator, by default, Global Accelerator allocates two IPv4 addresses for it. If one IP address from a network zone becomes unavailable due to IP address blocking by certain client networks, or network disruptions, then client applications can retry on the healthy static IP address from the other isolated network zone. Listener A listener processes inbound connections from clients to Global Accelerator, based on the port (or port range) and protocol (or protocols) that you configure. A listener can be configured for TCP, UDP, or both TCP and UDP protocols. Each listener has one or more endpoint groups associated with it, and traffic is forwarded to endpoints in one of the groups. You associate endpoint groups with listeners by specifying the Regions that you want to distribute traffic to. With a standard accelerator, traffic is distributed to optimal endpoints within the endpoint groups associated with a listener. Endpoint group Each endpoint group is associated with a specific AWS Region. Endpoint groups include one or more endpoints in the Region. With a standard accelerator, you can increase or reduce the percentage of traffic that would be otherwise directed to an endpoint group by adjusting a setting called a traffic dial. The traffic dial lets you easily do performance testing or blue/green deployment testing, for example, for new releases across different AWS Regions. Endpoint An endpoint is a resource that Global Accelerator directs traffic to. Endpoints for standard accelerators can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses. An Application Load Balancer endpoint can be internet-facing or internal. Traffic for standard accelerators is routed to endpoints based on the health of the endpoint along with configuration options that you choose, such as endpoint weights. For each endpoint, you can configure weights, which are numbers that you can use to specify the proportion of traffic to route to each one. This can be useful, for example, to do performance testing within a Region. Endpoints for custom routing accelerators are virtual private cloud (VPC) subnets with one or many EC2 instances.

Other APIs by amazonaws.com

AWS Route53 Recovery Readiness

AWS Route53 Recovery Readiness

Amazon CloudDirectory

Amazon Cloud Directory Amazon Cloud Directory is a component of the AWS Directory Service that simplifies the development and management of cloud-scale web, mobile, and IoT applications. This guide describes the Cloud Directory operations that you can call programmatically and includes detailed information on data types and errors. For information about Cloud Directory features, see AWS Directory Service and the Amazon Cloud Directory Developer Guide.

Amazon Glacier

Amazon S3 Glacier (Glacier) is a storage solution for "cold data." Glacier is an extremely low-cost storage service that provides secure, durable, and easy-to-use storage for data backup and archival. With Glacier, customers can store their data cost effectively for months, years, or decades. Glacier also enables customers to offload the administrative burdens of operating and scaling storage to AWS, so they don't have to worry about capacity planning, hardware provisioning, data replication, hardware failure and recovery, or time-consuming hardware migrations. Glacier is a great storage choice when low storage cost is paramount and your data is rarely retrieved. If your application requires fast or frequent access to your data, consider using Amazon S3. For more information, see Amazon Simple Storage Service (Amazon S3). You can store any kind of data in any format. There is no maximum limit on the total amount of data you can store in Glacier. If you are a first-time user of Glacier, we recommend that you begin by reading the following sections in the Amazon S3 Glacier Developer Guide : What is Amazon S3 Glacier - This section of the Developer Guide describes the underlying data model, the operations it supports, and the AWS SDKs that you can use to interact with the service. Getting Started with Amazon S3 Glacier - The Getting Started section walks you through the process of creating a vault, uploading archives, creating jobs to download archives, retrieving the job output, and deleting archives.

Amazon Rekognition

This is the Amazon Rekognition API reference.

Amazon Elastic Kubernetes Service

Amazon Elastic Kubernetes Service (Amazon EKS) is a managed service that makes it easy for you to run Kubernetes on Amazon Web Services without needing to stand up or maintain your own Kubernetes control plane. Kubernetes is an open-source system for automating the deployment, scaling, and management of containerized applications. Amazon EKS runs up-to-date versions of the open-source Kubernetes software, so you can use all the existing plugins and tooling from the Kubernetes community. Applications running on Amazon EKS are fully compatible with applications running on any standard Kubernetes environment, whether running in on-premises data centers or public clouds. This means that you can easily migrate any standard Kubernetes application to Amazon EKS without any code modification required.

AWS SSO Identity Store

The AWS Single Sign-On (SSO) Identity Store service provides a single place to retrieve all of your identities (users and groups). For more information about AWS, see the AWS Single Sign-On User Guide.

Amazon Connect Service

Amazon Connect is a cloud-based contact center solution that you use to set up and manage a customer contact center and provide reliable customer engagement at any scale. Amazon Connect provides metrics and real-time reporting that enable you to optimize contact routing. You can also resolve customer issues more efficiently by getting customers in touch with the appropriate agents. There are limits to the number of Amazon Connect resources that you can create. There are also limits to the number of requests that you can make per second. For more information, see Amazon Connect Service Quotas in the Amazon Connect Administrator Guide. You can connect programmatically to an AWS service by using an endpoint. For a list of Amazon Connect endpoints, see Amazon Connect Endpoints. Working with contact flows? Check out the Amazon Connect Flow language.

Amazon Lightsail

Amazon Lightsail is the easiest way to get started with Amazon Web Services (AWS) for developers who need to build websites or web applications. It includes everything you need to launch your project quickly - instances (virtual private servers), container services, storage buckets, managed databases, SSD-based block storage, static IP addresses, load balancers, content delivery network (CDN) distributions, DNS management of registered domains, and resource snapshots (backups) - for a low, predictable monthly price. You can manage your Lightsail resources using the Lightsail console, Lightsail API, AWS Command Line Interface (AWS CLI), or SDKs. For more information about Lightsail concepts and tasks, see the Amazon Lightsail Developer Guide. This API Reference provides detailed information about the actions, data types, parameters, and errors of the Lightsail service. For more information about the supported AWS Regions, endpoints, and service quotas of the Lightsail service, see Amazon Lightsail Endpoints and Quotas in the AWS General Reference.

AWS CodeBuild

CodeBuild CodeBuild is a fully managed build service in the cloud. CodeBuild compiles your source code, runs unit tests, and produces artifacts that are ready to deploy. CodeBuild eliminates the need to provision, manage, and scale your own build servers. It provides prepackaged build environments for the most popular programming languages and build tools, such as Apache Maven, Gradle, and more. You can also fully customize build environments in CodeBuild to use your own build tools. CodeBuild scales automatically to meet peak build requests. You pay only for the build time you consume. For more information about CodeBuild, see the CodeBuild User Guide.

AWS Elemental MediaPackage VOD

AWS Elemental MediaPackage VOD

Amazon Elastic File System

Amazon Elastic File System Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use with Amazon EC2 instances in the Amazon Web Services Cloud. With Amazon EFS, storage capacity is elastic, growing and shrinking automatically as you add and remove files, so your applications have the storage they need, when they need it. For more information, see the Amazon Elastic File System API Reference and the Amazon Elastic File System User Guide.

Amazon Kinesis Analytics

Amazon Kinesis Data Analytics is a fully managed service that you can use to process and analyze streaming data using Java, SQL, or Scala. The service enables you to quickly author and run Java, SQL, or Scala code against streaming sources to perform time series analytics, feed real-time dashboards, and create real-time metrics.

Other APIs in the same category

PolicyClient

azure.com
To manage and control access to your resources, you can define customized policies and assign them at a scope.

UpdateAdminClient

azure.com
Update location operation endpoints and objects.

EC2 Image Builder

EC2 Image Builder is a fully managed Amazon Web Services service that makes it easier to automate the creation, management, and deployment of customized, secure, and up-to-date "golden" server images that are pre-installed and pre-configured with software and settings to meet specific IT standards.

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for web test based alerting.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

AWS DataSync

DataSync DataSync is a managed data transfer service that makes it simpler for you to automate moving data between on-premises storage and Amazon Simple Storage Service (Amazon S3) or Amazon Elastic File System (Amazon EFS). This API interface reference for DataSync contains documentation for a programming interface that you can use to manage DataSync.

Managed Streaming for Kafka Connect

FinSpace Public API

The FinSpace APIs let you take actions inside the FinSpace environment.

Amazon Personalize

Amazon Personalize is a machine learning service that makes it easy to add individualized recommendations to customers.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Certificate entity in your Azure API Management deployment. Certificates can be used to setup mutual authentication with your Backend in API Management. For more information refer to How to secure backend using Mutual Auth Certificate.

Elastic Load Balancing

Elastic Load Balancing A load balancer distributes incoming traffic across targets, such as your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered targets and ensures that it routes traffic only to healthy targets. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer. You configure a target group with a protocol and port number for connections from the load balancer to the targets, and with health check settings to be used when checking the health status of the targets. Elastic Load Balancing supports the following types of load balancers: Application Load Balancers, Network Load Balancers, Gateway Load Balancers, and Classic Load Balancers. This reference covers the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). For more information, see the Elastic Load Balancing User Guide. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds.

Amazon WorkMail

Amazon WorkMail is a secure, managed business email and calendaring service with support for existing desktop and mobile email clients. You can access your email, contacts, and calendars using Microsoft Outlook, your browser, or other native iOS and Android email applications. You can integrate WorkMail with your existing corporate directory and control both the keys that encrypt your data and the location in which your data is stored. The WorkMail API is designed for the following scenarios: Listing and describing organizations Managing users Managing groups Managing resources All WorkMail API operations are Amazon-authenticated and certificate-signed. They not only require the use of the AWS SDK, but also allow for the exclusive use of AWS Identity and Access Management users and roles to help facilitate access, trust, and permission policies. By creating a role and allowing an IAM user to access the WorkMail site, the IAM user gains full administrative visibility into the entire WorkMail organization (or as set in the IAM policy). This includes, but is not limited to, the ability to create, update, and delete users, groups, and resources. This allows developers to perform the scenarios listed above, as well as give users the ability to grant access on a selective basis using the IAM model.