Mock sample for your project: DataLakeAnalyticsJobManagementClient API

Integrate with "DataLakeAnalyticsJobManagementClient API" from azure.com in no time with Mockoon's ready to use mock sample

DataLakeAnalyticsJobManagementClient

azure.com

Version: 2017-09-01-preview


Use this API in your project

Speed up your application development by using "DataLakeAnalyticsJobManagementClient API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and allow you to stop relying on an external API to get the job done. No more API keys to provision, accesses to configure or unplanned downtime, just work.
Enhance your development infrastructure by mocking third party APIs during integrating testing.

Description

Creates an Azure Data Lake Analytics job client.

Other APIs by azure.com

Security Center

azure.com
API spec for Microsoft.Security (Azure Security Center) resource provider

FabricAdminClient

azure.com
Infrastructure role operation endpoints and objects.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Property entity associated with your Azure API Management deployment. API Management policies are a powerful capability of the system that allow the publisher to change the behavior of the API through configuration. Policies are a collection of statements that are executed sequentially on the request or response of an API. Policy statements can be constructed using literal text values, policy expressions, and properties. Each API Management service instance has a properties collection of key/value pairs that are global to the service instance. These properties can be used to manage constant string values across all API configuration and policies.

HDInsightManagementClient

azure.com
The HDInsight Management Client.

AzureStack Azure Bridge Client

azure.com

AuthorizationManagementClient

azure.com
Role based access control provides you a way to apply granular level policy administration down to individual resources or resource groups. These operations enable you to manage role definitions and role assignments. A role definition describes the set of actions that can be performed on resources. A role assignment grants access to Azure Active Directory users.

ComputeManagementClient

azure.com
The Compute Management Client.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on User entity in Azure API Management deployment. The User entity in API Management represents the developers that call the APIs of the products to which they are subscribed.

ManagedNetworkManagementClient

azure.com
The Microsoft Azure Managed Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to programmatically view, control, change, and monitor your entire Azure network centrally and with ease.

LogicManagementClient

azure.com
REST API for Azure Logic Apps.

Azure ML Web Services Management Client

azure.com
These APIs allow end users to operate on Azure Machine Learning Web Services resources. They support the following operations: Create or update a web service Get a web service Patch a web service Delete a web service Get All Web Services in a Resource Group Get All Web Services in a Subscription Get Web Services Keys

ContainerRegistryManagementClient

azure.com

Other APIs in the same category

BlockchainManagementClient

azure.com
REST API for Azure Blockchain Service

DataShareManagementClient

azure.com
Creates a Microsoft.DataShare management client.

Amazon Detective

Detective uses machine learning and purpose-built visualizations to help you analyze and investigate security issues across your Amazon Web Services (AWS) workloads. Detective automatically extracts time-based events such as login attempts, API calls, and network traffic from AWS CloudTrail and Amazon Virtual Private Cloud (Amazon VPC) flow logs. It also extracts findings detected by Amazon GuardDuty. The Detective API primarily supports the creation and management of behavior graphs. A behavior graph contains the extracted data from a set of member accounts, and is created and managed by an administrator account. Every behavior graph is specific to a Region. You can only use the API to manage graphs that belong to the Region that is associated with the currently selected endpoint. A Detective administrator account can use the Detective API to do the following: Enable and disable Detective. Enabling Detective creates a new behavior graph. View the list of member accounts in a behavior graph. Add member accounts to a behavior graph. Remove member accounts from a behavior graph. A member account can use the Detective API to do the following: View the list of behavior graphs that they are invited to. Accept an invitation to contribute to a behavior graph. Decline an invitation to contribute to a behavior graph. Remove their account from a behavior graph. All API actions are logged as CloudTrail events. See Logging Detective API Calls with CloudTrail. We replaced the term "master account" with the term "administrator account." An administrator account is used to centrally manage multiple accounts. In the case of Detective, the administrator account manages the accounts in their behavior graph.

Amazon Mobile Analytics

Amazon Mobile Analytics is a service for collecting, visualizing, and understanding app usage data at scale.

Amazon WorkMail

Amazon WorkMail is a secure, managed business email and calendaring service with support for existing desktop and mobile email clients. You can access your email, contacts, and calendars using Microsoft Outlook, your browser, or other native iOS and Android email applications. You can integrate WorkMail with your existing corporate directory and control both the keys that encrypt your data and the location in which your data is stored. The WorkMail API is designed for the following scenarios: Listing and describing organizations Managing users Managing groups Managing resources All WorkMail API operations are Amazon-authenticated and certificate-signed. They not only require the use of the AWS SDK, but also allow for the exclusive use of AWS Identity and Access Management users and roles to help facilitate access, trust, and permission policies. By creating a role and allowing an IAM user to access the WorkMail site, the IAM user gains full administrative visibility into the entire WorkMail organization (or as set in the IAM policy). This includes, but is not limited to, the ability to create, update, and delete users, groups, and resources. This allows developers to perform the scenarios listed above, as well as give users the ability to grant access on a selective basis using the IAM model.

AWS Well-Architected Tool

AWS Well-Architected Tool This is the AWS Well-Architected Tool API Reference. The AWS Well-Architected Tool API provides programmatic access to the AWS Well-Architected Tool in the AWS Management Console. For information about the AWS Well-Architected Tool, see the AWS Well-Architected Tool User Guide.

Route53 Recovery Cluster

Welcome to the Amazon Route 53 Application Recovery Controller API Reference Guide for Recovery Control Data Plane . Recovery control in Route 53 Application Recovery Controller includes extremely reliable routing controls that enable you to recover applications by rerouting traffic, for example, across Availability Zones or AWS Regions. Routing controls are simple on/off switches hosted on a cluster. A cluster is a set of five redundant regional endpoints against which you can execute API calls to update or get the state of routing controls. You use routing controls to failover traffic to recover your application across Availability Zones or Regions. This API guide includes information about how to get and update routing control states in Route 53 Application Recovery Controller. For more information about Route 53 Application Recovery Controller, see the following: You can create clusters, routing controls, and control panels by using the control plane API for Recovery Control. For more information, see Amazon Route 53 Application Recovery Controller Recovery Control API Reference. Route 53 Application Recovery Controller also provides continuous readiness checks to ensure that your applications are scaled to handle failover traffic. For more information about the related API actions, see Amazon Route 53 Application Recovery Controller Recovery Readiness API Reference. For more information about creating resilient applications and preparing for recovery readiness with Route 53 Application Recovery Controller, see the Amazon Route 53 Application Recovery Controller Developer Guide.

AWS Application Cost Profiler

This reference provides descriptions of the AWS Application Cost Profiler API. The AWS Application Cost Profiler API provides programmatic access to view, create, update, and delete application cost report definitions, as well as to import your usage data into the Application Cost Profiler service. For more information about using this service, see the AWS Application Cost Profiler User Guide.

AWS CodeDeploy

AWS CodeDeploy AWS CodeDeploy is a deployment service that automates application deployments to Amazon EC2 instances, on-premises instances running in your own facility, serverless AWS Lambda functions, or applications in an Amazon ECS service. You can deploy a nearly unlimited variety of application content, such as an updated Lambda function, updated applications in an Amazon ECS service, code, web and configuration files, executables, packages, scripts, multimedia files, and so on. AWS CodeDeploy can deploy application content stored in Amazon S3 buckets, GitHub repositories, or Bitbucket repositories. You do not need to make changes to your existing code before you can use AWS CodeDeploy. AWS CodeDeploy makes it easier for you to rapidly release new features, helps you avoid downtime during application deployment, and handles the complexity of updating your applications, without many of the risks associated with error-prone manual deployments. AWS CodeDeploy Components Use the information in this guide to help you work with the following AWS CodeDeploy components: Application : A name that uniquely identifies the application you want to deploy. AWS CodeDeploy uses this name, which functions as a container, to ensure the correct combination of revision, deployment configuration, and deployment group are referenced during a deployment. Deployment group : A set of individual instances, CodeDeploy Lambda deployment configuration settings, or an Amazon ECS service and network details. A Lambda deployment group specifies how to route traffic to a new version of a Lambda function. An Amazon ECS deployment group specifies the service created in Amazon ECS to deploy, a load balancer, and a listener to reroute production traffic to an updated containerized application. An EC2/On-premises deployment group contains individually tagged instances, Amazon EC2 instances in Amazon EC2 Auto Scaling groups, or both. All deployment groups can specify optional trigger, alarm, and rollback settings. Deployment configuration : A set of deployment rules and deployment success and failure conditions used by AWS CodeDeploy during a deployment. Deployment : The process and the components used when updating a Lambda function, a containerized application in an Amazon ECS service, or of installing content on one or more instances. Application revisions : For an AWS Lambda deployment, this is an AppSpec file that specifies the Lambda function to be updated and one or more functions to validate deployment lifecycle events. For an Amazon ECS deployment, this is an AppSpec file that specifies the Amazon ECS task definition, container, and port where production traffic is rerouted. For an EC2/On-premises deployment, this is an archive file that contains source content—source code, webpages, executable files, and deployment scripts—along with an AppSpec file. Revisions are stored in Amazon S3 buckets or GitHub repositories. For Amazon S3, a revision is uniquely identified by its Amazon S3 object key and its ETag, version, or both. For GitHub, a revision is uniquely identified by its commit ID. This guide also contains information to help you get details about the instances in your deployments, to make on-premises instances available for AWS CodeDeploy deployments, to get details about a Lambda function deployment, and to get details about Amazon ECS service deployments. AWS CodeDeploy Information Resources AWS CodeDeploy User Guide AWS CodeDeploy API Reference Guide AWS CLI Reference for AWS CodeDeploy AWS CodeDeploy Developer Forum

Amazon Redshift

Amazon Redshift Overview This is an interface reference for Amazon Redshift. It contains documentation for one of the programming or command line interfaces you can use to manage Amazon Redshift clusters. Note that Amazon Redshift is asynchronous, which means that some interfaces may require techniques, such as polling or asynchronous callback handlers, to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a change is applied immediately, on the next instance reboot, or during the next maintenance window. For a summary of the Amazon Redshift cluster management interfaces, go to Using the Amazon Redshift Management Interfaces. Amazon Redshift manages all the work of setting up, operating, and scaling a data warehouse: provisioning capacity, monitoring and backing up the cluster, and applying patches and upgrades to the Amazon Redshift engine. You can focus on using your data to acquire new insights for your business and customers. If you are a first-time user of Amazon Redshift, we recommend that you begin by reading the Amazon Redshift Getting Started Guide. If you are a database developer, the Amazon Redshift Database Developer Guide explains how to design, build, query, and maintain the databases that make up your data warehouse.

Amazon Timestream Write

Amazon Timestream is a fast, scalable, fully managed time series database service that makes it easy to store and analyze trillions of time series data points per day. With Timestream, you can easily store and analyze IoT sensor data to derive insights from your IoT applications. You can analyze industrial telemetry to streamline equipment management and maintenance. You can also store and analyze log data and metrics to improve the performance and availability of your applications. Timestream is built from the ground up to effectively ingest, process, and store time series data. It organizes data to optimize query processing. It automatically scales based on the volume of data ingested and on the query volume to ensure you receive optimal performance while inserting and querying data. As your data grows over time, Timestream’s adaptive query processing engine spans across storage tiers to provide fast analysis while reducing costs.

Amazon Prometheus Service

Amazon Managed Service for Prometheus