Mock sample for your project: AWS Certificate Manager Private Certificate Authority API

Integrate with "AWS Certificate Manager Private Certificate Authority API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS Certificate Manager Private Certificate Authority

amazonaws.com

Version: 2017-08-22


Use this API in your project

Integrate third-party APIs faster by using "AWS Certificate Manager Private Certificate Authority API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
Improve your integration tests by mocking third-party APIs and cover more edge cases: slow response time, random failures, etc.

Description

This is the ACM Private CA API Reference. It provides descriptions, syntax, and usage examples for each of the actions and data types involved in creating and managing private certificate authorities (CA) for your organization. The documentation for each action shows the Query API request parameters and the XML response. Alternatively, you can use one of the AWS SDKs to access an API that's tailored to the programming language or platform that you're using. For more information, see AWS SDKs. Each ACM Private CA API operation has a quota that determines the number of times the operation can be called per second. ACM Private CA throttles API requests at different rates depending on the operation. Throttling means that ACM Private CA rejects an otherwise valid request because the request exceeds the operation's quota for the number of requests per second. When a request is throttled, ACM Private CA returns a ThrottlingException error. ACM Private CA does not guarantee a minimum request rate for APIs. To see an up-to-date list of your ACM Private CA quotas, or to request a quota increase, log into your AWS account and visit the Service Quotas console.

Other APIs by amazonaws.com

AWS IoT Wireless

AWS IoT Wireless API documentation

Amazon Route 53

Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service.

Amazon Elastic Container Registry Public

Amazon Elastic Container Registry Public Amazon Elastic Container Registry (Amazon ECR) is a managed container image registry service. Amazon ECR provides both public and private registries to host your container images. You can use the familiar Docker CLI, or their preferred client, to push, pull, and manage images. Amazon ECR provides a secure, scalable, and reliable registry for your Docker or Open Container Initiative (OCI) images. Amazon ECR supports public repositories with this API. For information about the Amazon ECR API for private repositories, see Amazon Elastic Container Registry API Reference.

AWS Application Discovery Service

AWS Application Discovery Service AWS Application Discovery Service helps you plan application migration projects. It automatically identifies servers, virtual machines (VMs), and network dependencies in your on-premises data centers. For more information, see the AWS Application Discovery Service FAQ. Application Discovery Service offers three ways of performing discovery and collecting data about your on-premises servers: Agentless discovery is recommended for environments that use VMware vCenter Server. This mode doesn't require you to install an agent on each host. It does not work in non-VMware environments. Agentless discovery gathers server information regardless of the operating systems, which minimizes the time required for initial on-premises infrastructure assessment. Agentless discovery doesn't collect information about network dependencies, only agent-based discovery collects that information. Agent-based discovery collects a richer set of data than agentless discovery by using the AWS Application Discovery Agent, which you install on one or more hosts in your data center. The agent captures infrastructure and application information, including an inventory of running processes, system performance information, resource utilization, and network dependencies. The information collected by agents is secured at rest and in transit to the Application Discovery Service database in the cloud. AWS Partner Network (APN) solutions integrate with Application Discovery Service, enabling you to import details of your on-premises environment directly into Migration Hub without using the discovery connector or discovery agent. Third-party application discovery tools can query AWS Application Discovery Service, and they can write to the Application Discovery Service database using the public API. In this way, you can import data into Migration Hub and view it, so that you can associate applications with servers and track migrations. Recommendations We recommend that you use agent-based discovery for non-VMware environments, and whenever you want to collect information about network dependencies. You can run agent-based and agentless discovery simultaneously. Use agentless discovery to complete the initial infrastructure assessment quickly, and then install agents on select hosts to collect additional information. Working With This Guide This API reference provides descriptions, syntax, and usage examples for each of the actions and data types for Application Discovery Service. The topic for each action shows the API request parameters and the response. Alternatively, you can use one of the AWS SDKs to access an API that is tailored to the programming language or platform that you're using. For more information, see AWS SDKs. Remember that you must set your Migration Hub home region before you call any of these APIs. You must make API calls for write actions (create, notify, associate, disassociate, import, or put) while in your home region, or a HomeRegionNotSetException error is returned. API calls for read actions (list, describe, stop, and delete) are permitted outside of your home region. Although it is unlikely, the Migration Hub home region could change. If you call APIs outside the home region, an InvalidInputException is returned. You must call GetHomeRegion to obtain the latest Migration Hub home region. This guide is intended for use with the AWS Application Discovery Service User Guide. All data is handled according to the AWS Privacy Policy. You can operate Application Discovery Service offline to inspect collected data before it is shared with the service.

Elastic Load Balancing

Elastic Load Balancing A load balancer can distribute incoming traffic across your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered instances and ensures that it routes traffic only to healthy instances. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer and a protocol and port number for connections from the load balancer to the instances. Elastic Load Balancing supports three types of load balancers: Application Load Balancers, Network Load Balancers, and Classic Load Balancers. You can select a load balancer based on your application needs. For more information, see the Elastic Load Balancing User Guide. This reference covers the 2012-06-01 API, which supports Classic Load Balancers. The 2015-12-01 API supports Application Load Balancers and Network Load Balancers. To get started, create a load balancer with one or more listeners using CreateLoadBalancer. Register your instances with the load balancer using RegisterInstancesWithLoadBalancer. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds with a 200 OK response code.

Amazon Simple Queue Service

Welcome to the Amazon SQS API Reference. Amazon SQS is a reliable, highly-scalable hosted queue for storing messages as they travel between applications or microservices. Amazon SQS moves data between distributed application components and helps you decouple these components. For information on the permissions you need to use this API, see Identity and access management in the Amazon SQS Developer Guide. You can use Amazon Web Services SDKs to access Amazon SQS using your favorite programming language. The SDKs perform tasks such as the following automatically: Cryptographically sign your service requests Retry requests Handle error responses Additional information Amazon SQS Product Page Amazon SQS Developer Guide Making API Requests Amazon SQS Message Attributes Amazon SQS Dead-Letter Queues Amazon SQS in the Command Line Interface Amazon Web Services General Reference Regions and Endpoints

Amazon Route 53 Domains

Amazon Route 53 API actions let you register domain names and perform related operations.

AWS Savings Plans

Savings Plans are a pricing model that offer significant savings on AWS usage (for example, on Amazon EC2 instances). You commit to a consistent amount of usage, in USD per hour, for a term of 1 or 3 years, and receive a lower price for that usage. For more information, see the AWS Savings Plans User Guide.

AWS Systems Manager Incident Manager

AWS Systems Manager Incident Manager is an incident management console designed to help users mitigate and recover from incidents affecting their AWS-hosted applications. An incident is any unplanned interruption or reduction in quality of services. Incident Manager increases incident resolution by notifying responders of impact, highlighting relevant troubleshooting data, and providing collaboration tools to get services back up and running. To achieve the primary goal of reducing the time-to-resolution of critical incidents, Incident Manager automates response plans and enables responder team escalation.

AWS Auto Scaling Plans

AWS Auto Scaling Use AWS Auto Scaling to create scaling plans for your applications to automatically scale your scalable AWS resources. API Summary You can use the AWS Auto Scaling service API to accomplish the following tasks: Create and manage scaling plans Define target tracking scaling policies to dynamically scale your resources based on utilization Scale Amazon EC2 Auto Scaling groups using predictive scaling and dynamic scaling to scale your Amazon EC2 capacity faster Set minimum and maximum capacity limits Retrieve information on existing scaling plans Access current forecast data and historical forecast data for up to 56 days previous To learn more about AWS Auto Scaling, including information about granting IAM users required permissions for AWS Auto Scaling actions, see the AWS Auto Scaling User Guide.

CodeArtifact

AWS CodeArtifact is a fully managed artifact repository compatible with language-native package managers and build tools such as npm, Apache Maven, and pip. You can use CodeArtifact to share packages with development teams and pull packages. Packages can be pulled from both public and CodeArtifact repositories. You can also create an upstream relationship between a CodeArtifact repository and another repository, which effectively merges their contents from the point of view of a package manager client. AWS CodeArtifact Components Use the information in this guide to help you work with the following CodeArtifact components: Repository : A CodeArtifact repository contains a set of package versions, each of which maps to a set of assets, or files. Repositories are polyglot, so a single repository can contain packages of any supported type. Each repository exposes endpoints for fetching and publishing packages using tools like the npm CLI, the Maven CLI ( mvn ), and pip . Domain : Repositories are aggregated into a higher-level entity known as a domain. All package assets and metadata are stored in the domain, but are consumed through repositories. A given package asset, such as a Maven JAR file, is stored once per domain, no matter how many repositories it's present in. All of the assets and metadata in a domain are encrypted with the same customer master key (CMK) stored in AWS Key Management Service (AWS KMS). Each repository is a member of a single domain and can't be moved to a different domain. The domain allows organizational policy to be applied across multiple repositories, such as which accounts can access repositories in the domain, and which public repositories can be used as sources of packages. Although an organization can have multiple domains, we recommend a single production domain that contains all published artifacts so that teams can find and share packages across their organization. Package : A package is a bundle of software and the metadata required to resolve dependencies and install the software. CodeArtifact supports npm, PyPI, and Maven package formats. In CodeArtifact, a package consists of: A name (for example, webpack is the name of a popular npm package) An optional namespace (for example, @types in @types/node) A set of versions (for example, 1.0.0, 1.0.1, 1.0.2, etc.) Package-level metadata (for example, npm tags) Package version : A version of a package, such as @types/node 12.6.9. The version number format and semantics vary for different package formats. For example, npm package versions must conform to the Semantic Versioning specification. In CodeArtifact, a package version consists of the version identifier, metadata at the package version level, and a set of assets. Upstream repository : One repository is upstream of another when the package versions in it can be accessed from the repository endpoint of the downstream repository, effectively merging the contents of the two repositories from the point of view of a client. CodeArtifact allows creating an upstream relationship between two repositories. Asset : An individual file stored in CodeArtifact associated with a package version, such as an npm.tgz file or Maven POM and JAR files. CodeArtifact supports these operations: AssociateExternalConnection : Adds an existing external connection to a repository. CopyPackageVersions : Copies package versions from one repository to another repository in the same domain. CreateDomain : Creates a domain CreateRepository : Creates a CodeArtifact repository in a domain. DeleteDomain : Deletes a domain. You cannot delete a domain that contains repositories. DeleteDomainPermissionsPolicy : Deletes the resource policy that is set on a domain. DeletePackageVersions : Deletes versions of a package. After a package has been deleted, it can be republished, but its assets and metadata cannot be restored because they have been permanently removed from storage. DeleteRepository : Deletes a repository. DeleteRepositoryPermissionsPolicy : Deletes the resource policy that is set on a repository. DescribeDomain : Returns a DomainDescription object that contains information about the requested domain. DescribePackageVersion : Returns a PackageVersionDescription object that contains details about a package version. DescribeRepository : Returns a RepositoryDescription object that contains detailed information about the requested repository. DisposePackageVersions : Disposes versions of a package. A package version with the status Disposed cannot be restored because they have been permanently removed from storage. DisassociateExternalConnection : Removes an existing external connection from a repository. GetAuthorizationToken : Generates a temporary authorization token for accessing repositories in the domain. The token expires the authorization period has passed. The default authorization period is 12 hours and can be customized to any length with a maximum of 12 hours. GetDomainPermissionsPolicy : Returns the policy of a resource that is attached to the specified domain. GetPackageVersionAsset : Returns the contents of an asset that is in a package version. GetPackageVersionReadme : Gets the readme file or descriptive text for a package version. GetRepositoryEndpoint : Returns the endpoint of a repository for a specific package format. A repository has one endpoint for each package format: npm pypi maven GetRepositoryPermissionsPolicy : Returns the resource policy that is set on a repository. ListDomains : Returns a list of DomainSummary objects. Each returned DomainSummary object contains information about a domain. ListPackages : Lists the packages in a repository. ListPackageVersionAssets : Lists the assets for a given package version. ListPackageVersionDependencies : Returns a list of the direct dependencies for a package version. ListPackageVersions : Returns a list of package versions for a specified package in a repository. ListRepositories : Returns a list of repositories owned by the AWS account that called this method. ListRepositoriesInDomain : Returns a list of the repositories in a domain. PutDomainPermissionsPolicy : Attaches a resource policy to a domain. PutRepositoryPermissionsPolicy : Sets the resource policy on a repository that specifies permissions to access it. UpdatePackageVersionsStatus : Updates the status of one or more versions of a package. UpdateRepository : Updates the properties of a repository.

Amazon Augmented AI Runtime

Amazon Augmented AI (Amazon A2I) adds the benefit of human judgment to any machine learning application. When an AI application can't evaluate data with a high degree of confidence, human reviewers can take over. This human review is called a human review workflow. To create and start a human review workflow, you need three resources: a worker task template, a flow definition, and a human loop. For information about these resources and prerequisites for using Amazon A2I, see Get Started with Amazon Augmented AI in the Amazon SageMaker Developer Guide. This API reference includes information about API actions and data types that you can use to interact with Amazon A2I programmatically. Use this guide to: Start a human loop with the StartHumanLoop operation when using Amazon A2I with a custom task type. To learn more about the difference between custom and built-in task types, see Use Task Types. To learn how to start a human loop using this API, see Create and Start a Human Loop for a Custom Task Type in the Amazon SageMaker Developer Guide. Manage your human loops. You can list all human loops that you have created, describe individual human loops, and stop and delete human loops. To learn more, see Monitor and Manage Your Human Loop in the Amazon SageMaker Developer Guide. Amazon A2I integrates APIs from various AWS services to create and start human review workflows for those services. To learn how Amazon A2I uses these APIs, see Use APIs in Amazon A2I in the Amazon SageMaker Developer Guide.

Other APIs in the same category

CommerceManagementClient

azure.com
The Admin Commerce Management Client.

TrafficManagerManagementClient

azure.com

AuthorizationManagementClient

azure.com
Role based access control provides you a way to apply granular level policy administration down to individual resources or resource groups. These operations enable you to manage role definitions and role assignments. A role definition describes the set of actions that can be performed on resources. A role assignment grants access to Azure Active Directory users.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on tenant entity associated with your Azure API Management deployment. Using this entity you can manage properties and configuration that apply to the entire API Management service instance.

AuthorizationManagementClient

azure.com
Role based access control provides you a way to apply granular level policy administration down to individual resources or resource groups. These operations enable you to manage role definitions and role assignments. A role definition describes the set of actions that can be performed on resources. A role assignment grants access to Azure Active Directory users.

FabricAdminClient

azure.com
Operation status operation endpoints and objects.

UpdateAdminClient

azure.com
Update run operation endpoints and objects.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Global Policies in Azure API Management deployment.

ApiManagementClient

azure.com
Use these REST APIs for getting the network connectivity status of your Azure API Management deployment. When the API Management service is deployed inside a Virtual Network, it needs to have access to other Azure resources it depends on. This also gives details about the DNS Servers visible to Azure API Management deployment.

Amazon Chime SDK Messaging

The Amazon Chime SDK Messaging APIs in this section allow software developers to send and receive messages in custom messaging applications. These APIs depend on the frameworks provided by the Amazon Chime SDK Identity APIs. For more information about the messaging APIs, see Amazon Chime SDK messaging

NetworkAdminManagementClient

azure.com
Public IP Address admin endpoints and objects.

FabricAdminClient

azure.com
MAC address pool operation endpoints and objects.