Mock sample for your project: Security Center API

Integrate with "Security Center API" from azure.com in no time with Mockoon's ready to use mock sample

Security Center

azure.com

Version: 2015-06-01-preview


Use this API in your project

Speed up your application development by using "Security Center API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
It also improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

API spec for Microsoft.Security (Azure Security Center) resource provider

Other APIs by azure.com

FabricAdminClient

azure.com
Storage subsystem operation endpoints and objects.

StorageManagementClient

azure.com
The Azure Storage Management API.

FabricAdminClient

azure.com
Edge gateway operation endpoints and objects.

Azure Stack Azure Bridge Client

azure.com

RunCommandsClient

azure.com
The Run Commands Client.

KeyVaultManagementClient

azure.com
The Azure management API provides a RESTful set of web services that interact with Azure Key Vault.

StorageManagementClient

azure.com
The Admin Storage Management Client.

Anomaly Detector Client

azure.com
The Anomaly Detector API detects anomalies automatically in time series data. It supports two kinds of mode, one is for stateless using, another is for stateful using. In stateless mode, there are three functionalities. Entire Detect is for detecting the whole series with model trained by the time series, Last Detect is detecting last point with model trained by points before. ChangePoint Detect is for detecting trend changes in time series. In stateful mode, user can store time series, the stored time series will be used for detection anomalies. Under this mode, user can still use the above three functionalities by only giving a time range without preparing time series in client side. Besides the above three functionalities, stateful model also provide group based detection and labeling service. By leveraging labeling service user can provide labels for each detection result, these labels will be used for retuning or regenerating detection models. Inconsistency detection is a kind of group based detection, this detection will find inconsistency ones in a set of time series. By using anomaly detector service, business customers can discover incidents and establish a logic flow for root cause analysis.

Azure Addons Resource Provider

azure.com
The service for managing third party addons.

Management Groups

azure.com
The Azure Management Groups API enables consolidation of multiple subscriptions/resources into an organizational hierarchy and centrally manage access control, policies, alerting and reporting for those resources.

FrontDoorManagementClient

azure.com
Use these APIs to manage Azure Front Door resources through the Azure Resource Manager. You must make sure that requests made to these resources are secure.

StorageManagementClient

azure.com
The Admin Storage Management Client.

Other APIs in the same category

SqlManagementClient

azure.com
The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.

Amazon Athena

Amazon Athena is an interactive query service that lets you use standard SQL to analyze data directly in Amazon S3. You can point Athena at your data in Amazon S3 and run ad-hoc queries and get results in seconds. Athena is serverless, so there is no infrastructure to set up or manage. You pay only for the queries you run. Athena scales automatically—executing queries in parallel—so results are fast, even with large datasets and complex queries. For more information, see What is Amazon Athena in the Amazon Athena User Guide. If you connect to Athena using the JDBC driver, use version 1.1.0 of the driver or later with the Amazon Athena API. Earlier version drivers do not support the API. For more information and to download the driver, see Accessing Amazon Athena with JDBC. For code samples using the Amazon Web Services SDK for Java, see Examples and Code Samples in the Amazon Athena User Guide.

Amazon CodeGuru Profiler

This section provides documentation for the Amazon CodeGuru Profiler API operations. Amazon CodeGuru Profiler collects runtime performance data from your live applications, and provides recommendations that can help you fine-tune your application performance. Using machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of code and suggest ways you can improve efficiency and remove CPU bottlenecks. Amazon CodeGuru Profiler provides different visualizations of profiling data to help you identify what code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU utilization. Amazon CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM) languages and Python. While CodeGuru Profiler supports both visualizations and recommendations for applications written in Java, it can also generate visualizations and a subset of recommendations for applications written in other JVM languages and Python. For more information, see What is Amazon CodeGuru Profiler in the Amazon CodeGuru Profiler User Guide.

Amazon WorkDocs

The WorkDocs API is designed for the following use cases: File Migration: File migration applications are supported for users who want to migrate their files from an on-premises or off-premises file system or service. Users can insert files into a user directory structure, as well as allow for basic metadata changes, such as modifications to the permissions of files. Security: Support security applications are supported for users who have additional security needs, such as antivirus or data loss prevention. The API actions, along with AWS CloudTrail, allow these applications to detect when changes occur in Amazon WorkDocs. Then, the application can take the necessary actions and replace the target file. If the target file violates the policy, the application can also choose to email the user. eDiscovery/Analytics: General administrative applications are supported, such as eDiscovery and analytics. These applications can choose to mimic or record the actions in an Amazon WorkDocs site, along with AWS CloudTrail, to replicate data for eDiscovery, backup, or analytical applications. All Amazon WorkDocs API actions are Amazon authenticated and certificate-signed. They not only require the use of the AWS SDK, but also allow for the exclusive use of IAM users and roles to help facilitate access, trust, and permission policies. By creating a role and allowing an IAM user to access the Amazon WorkDocs site, the IAM user gains full administrative visibility into the entire Amazon WorkDocs site (or as set in the IAM policy). This includes, but is not limited to, the ability to modify file permissions and upload any file to any user. This allows developers to perform the three use cases above, as well as give users the ability to grant access on a selective basis using the IAM model.

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for API keys of a component.

Amazon Kinesis Video Streams Archived Media

CodeArtifact

AWS CodeArtifact is a fully managed artifact repository compatible with language-native package managers and build tools such as npm, Apache Maven, and pip. You can use CodeArtifact to share packages with development teams and pull packages. Packages can be pulled from both public and CodeArtifact repositories. You can also create an upstream relationship between a CodeArtifact repository and another repository, which effectively merges their contents from the point of view of a package manager client. AWS CodeArtifact Components Use the information in this guide to help you work with the following CodeArtifact components: Repository : A CodeArtifact repository contains a set of package versions, each of which maps to a set of assets, or files. Repositories are polyglot, so a single repository can contain packages of any supported type. Each repository exposes endpoints for fetching and publishing packages using tools like the npm CLI, the Maven CLI ( mvn ), and pip . Domain : Repositories are aggregated into a higher-level entity known as a domain. All package assets and metadata are stored in the domain, but are consumed through repositories. A given package asset, such as a Maven JAR file, is stored once per domain, no matter how many repositories it's present in. All of the assets and metadata in a domain are encrypted with the same customer master key (CMK) stored in AWS Key Management Service (AWS KMS). Each repository is a member of a single domain and can't be moved to a different domain. The domain allows organizational policy to be applied across multiple repositories, such as which accounts can access repositories in the domain, and which public repositories can be used as sources of packages. Although an organization can have multiple domains, we recommend a single production domain that contains all published artifacts so that teams can find and share packages across their organization. Package : A package is a bundle of software and the metadata required to resolve dependencies and install the software. CodeArtifact supports npm, PyPI, and Maven package formats. In CodeArtifact, a package consists of: A name (for example, webpack is the name of a popular npm package) An optional namespace (for example, @types in @types/node) A set of versions (for example, 1.0.0, 1.0.1, 1.0.2, etc.) Package-level metadata (for example, npm tags) Package version : A version of a package, such as @types/node 12.6.9. The version number format and semantics vary for different package formats. For example, npm package versions must conform to the Semantic Versioning specification. In CodeArtifact, a package version consists of the version identifier, metadata at the package version level, and a set of assets. Upstream repository : One repository is upstream of another when the package versions in it can be accessed from the repository endpoint of the downstream repository, effectively merging the contents of the two repositories from the point of view of a client. CodeArtifact allows creating an upstream relationship between two repositories. Asset : An individual file stored in CodeArtifact associated with a package version, such as an npm.tgz file or Maven POM and JAR files. CodeArtifact supports these operations: AssociateExternalConnection : Adds an existing external connection to a repository. CopyPackageVersions : Copies package versions from one repository to another repository in the same domain. CreateDomain : Creates a domain CreateRepository : Creates a CodeArtifact repository in a domain. DeleteDomain : Deletes a domain. You cannot delete a domain that contains repositories. DeleteDomainPermissionsPolicy : Deletes the resource policy that is set on a domain. DeletePackageVersions : Deletes versions of a package. After a package has been deleted, it can be republished, but its assets and metadata cannot be restored because they have been permanently removed from storage. DeleteRepository : Deletes a repository. DeleteRepositoryPermissionsPolicy : Deletes the resource policy that is set on a repository. DescribeDomain : Returns a DomainDescription object that contains information about the requested domain. DescribePackageVersion : Returns a PackageVersionDescription object that contains details about a package version. DescribeRepository : Returns a RepositoryDescription object that contains detailed information about the requested repository. DisposePackageVersions : Disposes versions of a package. A package version with the status Disposed cannot be restored because they have been permanently removed from storage. DisassociateExternalConnection : Removes an existing external connection from a repository. GetAuthorizationToken : Generates a temporary authorization token for accessing repositories in the domain. The token expires the authorization period has passed. The default authorization period is 12 hours and can be customized to any length with a maximum of 12 hours. GetDomainPermissionsPolicy : Returns the policy of a resource that is attached to the specified domain. GetPackageVersionAsset : Returns the contents of an asset that is in a package version. GetPackageVersionReadme : Gets the readme file or descriptive text for a package version. GetRepositoryEndpoint : Returns the endpoint of a repository for a specific package format. A repository has one endpoint for each package format: npm pypi maven GetRepositoryPermissionsPolicy : Returns the resource policy that is set on a repository. ListDomains : Returns a list of DomainSummary objects. Each returned DomainSummary object contains information about a domain. ListPackages : Lists the packages in a repository. ListPackageVersionAssets : Lists the assets for a given package version. ListPackageVersionDependencies : Returns a list of the direct dependencies for a package version. ListPackageVersions : Returns a list of package versions for a specified package in a repository. ListRepositories : Returns a list of repositories owned by the AWS account that called this method. ListRepositoriesInDomain : Returns a list of the repositories in a domain. PutDomainPermissionsPolicy : Attaches a resource policy to a domain. PutRepositoryPermissionsPolicy : Sets the resource policy on a repository that specifies permissions to access it. UpdatePackageVersionsStatus : Updates the status of one or more versions of a package. UpdateRepository : Updates the properties of a repository.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on the ApiVersionSet entity associated with your Azure API Management deployment. Using this entity you create and manage API Version Sets that are used to group APIs for consistent versioning.

DevSpacesManagement

azure.com
Dev Spaces REST API

FabricAdminClient

azure.com
Scale unit operation endpoints and objects.

Amazon Chime SDK Messaging

The Amazon Chime SDK Messaging APIs in this section allow software developers to send and receive messages in custom messaging applications. These APIs depend on the frameworks provided by the Amazon Chime SDK Identity APIs. For more information about the messaging APIs, see Amazon Chime SDK messaging

AWS Secrets Manager

Amazon Web Services Secrets Manager Amazon Web Services Secrets Manager provides a service to enable you to store, manage, and retrieve, secrets. This guide provides descriptions of the Secrets Manager API. For more information about using this service, see the Amazon Web Services Secrets Manager User Guide. API Version This version of the Secrets Manager API Reference documents the Secrets Manager API version 2017-10-17. As an alternative to using the API, you can use one of the Amazon Web Services SDKs, which consist of libraries and sample code for various programming languages and platforms such as Java, Ruby, .NET, iOS, and Android. The SDKs provide a convenient way to create programmatic access to Amazon Web Services Secrets Manager. For example, the SDKs provide cryptographically signing requests, managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including downloading and installing them, see Tools for Amazon Web Services. We recommend you use the Amazon Web Services SDKs to make programmatic API calls to Secrets Manager. However, you also can use the Secrets Manager HTTP Query API to make direct calls to the Secrets Manager web service. To learn more about the Secrets Manager HTTP Query API, see Making Query Requests in the Amazon Web Services Secrets Manager User Guide. Secrets Manager API supports GET and POST requests for all actions, and doesn't require you to use GET for some actions and POST for others. However, GET requests are subject to the limitation size of a URL. Therefore, for operations that require larger sizes, use a POST request. Support and Feedback for Amazon Web Services Secrets Manager We welcome your feedback. Send your comments to [email protected], or post your feedback and questions in the Amazon Web Services Secrets Manager Discussion Forum. For more information about the Amazon Web Services Discussion Forums, see Forums Help. How examples are presented The JSON that Amazon Web Services Secrets Manager expects as your request parameters and the service returns as a response to HTTP query requests contain single, long strings without line breaks or white space formatting. The JSON shown in the examples displays the code formatted with both line breaks and white space to improve readability. When example input parameters can also cause long strings extending beyond the screen, you can insert line breaks to enhance readability. You should always submit the input as a single JSON text string. Logging API Requests Amazon Web Services Secrets Manager supports Amazon Web Services CloudTrail, a service that records Amazon Web Services API calls for your Amazon Web Services account and delivers log files to an Amazon S3 bucket. By using information that's collected by Amazon Web Services CloudTrail, you can determine the requests successfully made to Secrets Manager, who made the request, when it was made, and so on. For more about Amazon Web Services Secrets Manager and support for Amazon Web Services CloudTrail, see Logging Amazon Web Services Secrets Manager Events with Amazon Web Services CloudTrail in the Amazon Web Services Secrets Manager User Guide. To learn more about CloudTrail, including enabling it and find your log files, see the Amazon Web Services CloudTrail User Guide.