Mock sample for your project: AWS Server Migration Service API

Integrate with "AWS Server Migration Service API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS Server Migration Service

amazonaws.com

Version: 2016-10-24


Use this API in your project

Speed up your application development by using "AWS Server Migration Service API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and allow you to stop relying on an external API to get the job done. No more API keys to provision, accesses to configure or unplanned downtime, just work.
Enhance your development infrastructure by mocking third party APIs during integrating testing.

Description

AWS Server Migration Service AWS Server Migration Service (AWS SMS) makes it easier and faster for you to migrate your on-premises workloads to AWS. To learn more about AWS SMS, see the following resources: AWS Server Migration Service product page AWS Server Migration Service User Guide

Other APIs by amazonaws.com

Amazon Interactive Video Service

Introduction The Amazon Interactive Video Service (IVS) API is REST compatible, using a standard HTTP API and an AWS EventBridge event stream for responses. JSON is used for both requests and responses, including errors. The API is an AWS regional service, currently in these regions: us-west-2, us-east-1, and eu-west-1. All API request parameters and URLs are case sensitive. For a summary of notable documentation changes in each release, see Document History. Service Endpoints The following are the Amazon IVS service endpoints (all HTTPS): Region name: US West (Oregon) Region: us-west-2 Endpoint: ivs.us-west-2.amazonaws.com Region name: US East (Virginia) Region: us-east-1 Endpoint: ivs.us-east-1.amazonaws.com Region name: EU West (Dublin) Region: eu-west-1 Endpoint: ivs.eu-west-1.amazonaws.com Allowed Header Values Accept: application/json Accept-Encoding: gzip, deflate Content-Type: application/json Resources The following resources contain information about your IVS live stream (see Getting Started with Amazon IVS): Channel β€” Stores configuration data related to your live stream. You first create a channel and then use the channel’s stream key to start your live stream. See the Channel endpoints for more information. Stream key β€” An identifier assigned by Amazon IVS when you create a channel, which is then used to authorize streaming. See the StreamKey endpoints for more information. Treat the stream key like a secret, since it allows anyone to stream to the channel. Playback key pair β€” Video playback may be restricted using playback-authorization tokens, which use public-key encryption. A playback key pair is the public-private pair of keys used to sign and validate the playback-authorization token. See the PlaybackKeyPair endpoints for more information. Recording configuration β€” Stores configuration related to recording a live stream and where to store the recorded content. Multiple channels can reference the same recording configuration. See the Recording Configuration endpoints for more information. Tagging A tag is a metadata label that you assign to an AWS resource. A tag comprises a key and a value, both set by you. For example, you might set a tag as topic:nature to label a particular video category. See Tagging AWS Resources for more information, including restrictions that apply to tags. Tags can help you identify and organize your AWS resources. For example, you can use the same tag for different resources to indicate that they are related. You can also use tags to manage access (see Access Tags). The Amazon IVS API has these tag-related endpoints: TagResource, UntagResource, and ListTagsForResource. The following resources support tagging: Channels, Stream Keys, Playback Key Pairs, and Recording Configurations. Authentication versus Authorization Note the differences between these concepts: Authentication is about verifying identity. You need to be authenticated to sign Amazon IVS API requests. Authorization is about granting permissions. You need to be authorized to view Amazon IVS private channels. (Private channels are channels that are enabled for "playback authorization.") Authentication All Amazon IVS API requests must be authenticated with a signature. The AWS Command-Line Interface (CLI) and Amazon IVS Player SDKs take care of signing the underlying API calls for you. However, if your application calls the Amazon IVS API directly, it’s your responsibility to sign the requests. You generate a signature using valid AWS credentials that have permission to perform the requested action. For example, you must sign PutMetadata requests with a signature generated from an IAM user account that has the ivs:PutMetadata permission. For more information: Authentication and generating signatures β€” See Authenticating Requests (AWS Signature Version 4) in the AWS General Reference. Managing Amazon IVS permissions β€” See Identity and Access Management on the Security page of the Amazon IVS User Guide. Channel Endpoints CreateChannel β€” Creates a new channel and an associated stream key to start streaming. GetChannel β€” Gets the channel configuration for the specified channel ARN (Amazon Resource Name). BatchGetChannel β€” Performs GetChannel on multiple ARNs simultaneously. ListChannels β€” Gets summary information about all channels in your account, in the AWS region where the API request is processed. This list can be filtered to match a specified name or recording-configuration ARN. Filters are mutually exclusive and cannot be used together. If you try to use both filters, you will get an error (409 Conflict Exception). UpdateChannel β€” Updates a channel's configuration. This does not affect an ongoing stream of this channel. You must stop and restart the stream for the changes to take effect. DeleteChannel β€” Deletes the specified channel. StreamKey Endpoints CreateStreamKey β€” Creates a stream key, used to initiate a stream, for the specified channel ARN. GetStreamKey β€” Gets stream key information for the specified ARN. BatchGetStreamKey β€” Performs GetStreamKey on multiple ARNs simultaneously. ListStreamKeys β€” Gets summary information about stream keys for the specified channel. DeleteStreamKey β€” Deletes the stream key for the specified ARN, so it can no longer be used to stream. Stream Endpoints GetStream β€” Gets information about the active (live) stream on a specified channel. ListStreams β€” Gets summary information about live streams in your account, in the AWS region where the API request is processed. StopStream β€” Disconnects the incoming RTMPS stream for the specified channel. Can be used in conjunction with DeleteStreamKey to prevent further streaming to a channel. PutMetadata β€” Inserts metadata into the active stream of the specified channel. A maximum of 5 requests per second per channel is allowed, each with a maximum 1 KB payload. (If 5 TPS is not sufficient for your needs, we recommend batching your data into a single PutMetadata call.) PlaybackKeyPair Endpoints For more information, see Setting Up Private Channels in the Amazon IVS User Guide. ImportPlaybackKeyPair β€” Imports the public portion of a new key pair and returns its arn and fingerprint. The privateKey can then be used to generate viewer authorization tokens, to grant viewers access to private channels (channels enabled for playback authorization). GetPlaybackKeyPair β€” Gets a specified playback authorization key pair and returns the arn and fingerprint. The privateKey held by the caller can be used to generate viewer authorization tokens, to grant viewers access to private channels. ListPlaybackKeyPairs β€” Gets summary information about playback key pairs. DeletePlaybackKeyPair β€” Deletes a specified authorization key pair. This invalidates future viewer tokens generated using the key pair’s privateKey. RecordingConfiguration Endpoints CreateRecordingConfiguration β€” Creates a new recording configuration, used to enable recording to Amazon S3. GetRecordingConfiguration β€” Gets the recording-configuration metadata for the specified ARN. ListRecordingConfigurations β€” Gets summary information about all recording configurations in your account, in the AWS region where the API request is processed. DeleteRecordingConfiguration β€” Deletes the recording configuration for the specified ARN. AWS Tags Endpoints TagResource β€” Adds or updates tags for the AWS resource with the specified ARN. UntagResource β€” Removes tags from the resource with the specified ARN. ListTagsForResource β€” Gets information about AWS tags for the specified ARN.

Amazon WorkMail

Amazon WorkMail is a secure, managed business email and calendaring service with support for existing desktop and mobile email clients. You can access your email, contacts, and calendars using Microsoft Outlook, your browser, or other native iOS and Android email applications. You can integrate WorkMail with your existing corporate directory and control both the keys that encrypt your data and the location in which your data is stored. The WorkMail API is designed for the following scenarios: Listing and describing organizations Managing users Managing groups Managing resources All WorkMail API operations are Amazon-authenticated and certificate-signed. They not only require the use of the AWS SDK, but also allow for the exclusive use of AWS Identity and Access Management users and roles to help facilitate access, trust, and permission policies. By creating a role and allowing an IAM user to access the WorkMail site, the IAM user gains full administrative visibility into the entire WorkMail organization (or as set in the IAM policy). This includes, but is not limited to, the ability to create, update, and delete users, groups, and resources. This allows developers to perform the scenarios listed above, as well as give users the ability to grant access on a selective basis using the IAM model.

AWS Amplify

Amplify enables developers to develop and deploy cloud-powered mobile and web apps. The Amplify Console provides a continuous delivery and hosting service for web applications. For more information, see the Amplify Console User Guide. The Amplify Framework is a comprehensive set of SDKs, libraries, tools, and documentation for client app development. For more information, see the Amplify Framework.

Amazon Cognito Sync

Amazon Cognito Sync Amazon Cognito Sync provides an AWS service and client library that enable cross-device syncing of application-related user data. High-level client libraries are available for both iOS and Android. You can use these libraries to persist data locally so that it's available even if the device is offline. Developer credentials don't need to be stored on the mobile device to access the service. You can use Amazon Cognito to obtain a normalized user ID and credentials. User data is persisted in a dataset that can store up to 1 MB of key-value pairs, and you can have up to 20 datasets per user identity. With Amazon Cognito Sync, the data stored for each identity is accessible only to credentials assigned to that identity. In order to use the Cognito Sync service, you need to make API calls using credentials retrieved with Amazon Cognito Identity service. If you want to use Cognito Sync in an Android or iOS application, you will probably want to make API calls via the AWS Mobile SDK. To learn more, see the Developer Guide for Android and the Developer Guide for iOS.

Amazon CloudHSM

AWS CloudHSM Service This is documentation for AWS CloudHSM Classic. For more information, see AWS CloudHSM Classic FAQs, the AWS CloudHSM Classic User Guide, and the AWS CloudHSM Classic API Reference. For information about the current version of AWS CloudHSM, see AWS CloudHSM, the AWS CloudHSM User Guide, and the AWS CloudHSM API Reference.

Amazon CodeGuru Reviewer

This section provides documentation for the Amazon CodeGuru Reviewer API operations. CodeGuru Reviewer is a service that uses program analysis and machine learning to detect potential defects that are difficult for developers to find and recommends fixes in your Java and Python code. By proactively detecting and providing recommendations for addressing code defects and implementing best practices, CodeGuru Reviewer improves the overall quality and maintainability of your code base during the code review stage. For more information about CodeGuru Reviewer, see the Amazon CodeGuru Reviewer User Guide. To improve the security of your CodeGuru Reviewer API calls, you can establish a private connection between your VPC and CodeGuru Reviewer by creating an interface VPC endpoint. For more information, see CodeGuru Reviewer and interface VPC endpoints (Amazon Web Services PrivateLink) in the Amazon CodeGuru Reviewer User Guide.

AWS CodePipeline

AWS CodePipeline Overview This is the AWS CodePipeline API Reference. This guide provides descriptions of the actions and data types for AWS CodePipeline. Some functionality for your pipeline can only be configured through the API. For more information, see the AWS CodePipeline User Guide. You can use the AWS CodePipeline API to work with pipelines, stages, actions, and transitions. Pipelines are models of automated release processes. Each pipeline is uniquely named, and consists of stages, actions, and transitions. You can work with pipelines by calling: CreatePipeline, which creates a uniquely named pipeline. DeletePipeline, which deletes the specified pipeline. GetPipeline, which returns information about the pipeline structure and pipeline metadata, including the pipeline Amazon Resource Name (ARN). GetPipelineExecution, which returns information about a specific execution of a pipeline. GetPipelineState, which returns information about the current state of the stages and actions of a pipeline. ListActionExecutions, which returns action-level details for past executions. The details include full stage and action-level details, including individual action duration, status, any errors that occurred during the execution, and input and output artifact location details. ListPipelines, which gets a summary of all of the pipelines associated with your account. ListPipelineExecutions, which gets a summary of the most recent executions for a pipeline. StartPipelineExecution, which runs the most recent revision of an artifact through the pipeline. StopPipelineExecution, which stops the specified pipeline execution from continuing through the pipeline. UpdatePipeline, which updates a pipeline with edits or changes to the structure of the pipeline. Pipelines include stages. Each stage contains one or more actions that must complete before the next stage begins. A stage results in success or failure. If a stage fails, the pipeline stops at that stage and remains stopped until either a new version of an artifact appears in the source location, or a user takes action to rerun the most recent artifact through the pipeline. You can call GetPipelineState, which displays the status of a pipeline, including the status of stages in the pipeline, or GetPipeline, which returns the entire structure of the pipeline, including the stages of that pipeline. For more information about the structure of stages and actions, see AWS CodePipeline Pipeline Structure Reference. Pipeline stages include actions that are categorized into categories such as source or build actions performed in a stage of a pipeline. For example, you can use a source action to import artifacts into a pipeline from a source such as Amazon S3. Like stages, you do not work with actions directly in most cases, but you do define and interact with actions when working with pipeline operations such as CreatePipeline and GetPipelineState. Valid action categories are: Source Build Test Deploy Approval Invoke Pipelines also include transitions, which allow the transition of artifacts from one stage to the next in a pipeline after the actions in one stage complete. You can work with transitions by calling: DisableStageTransition, which prevents artifacts from transitioning to the next stage in a pipeline. EnableStageTransition, which enables transition of artifacts between stages in a pipeline. Using the API to integrate with AWS CodePipeline For third-party integrators or developers who want to create their own integrations with AWS CodePipeline, the expected sequence varies from the standard API user. To integrate with AWS CodePipeline, developers need to work with the following items: Jobs, which are instances of an action. For example, a job for a source action might import a revision of an artifact from a source. You can work with jobs by calling: AcknowledgeJob, which confirms whether a job worker has received the specified job. GetJobDetails, which returns the details of a job. PollForJobs, which determines whether there are any jobs to act on. PutJobFailureResult, which provides details of a job failure. PutJobSuccessResult, which provides details of a job success. Third party jobs, which are instances of an action created by a partner action and integrated into AWS CodePipeline. Partner actions are created by members of the AWS Partner Network. You can work with third party jobs by calling: AcknowledgeThirdPartyJob, which confirms whether a job worker has received the specified job. GetThirdPartyJobDetails, which requests the details of a job for a partner action. PollForThirdPartyJobs, which determines whether there are any jobs to act on. PutThirdPartyJobFailureResult, which provides details of a job failure. PutThirdPartyJobSuccessResult, which provides details of a job success.

AWS App Mesh

App Mesh is a service mesh based on the Envoy proxy that makes it easy to monitor and control microservices. App Mesh standardizes how your microservices communicate, giving you end-to-end visibility and helping to ensure high availability for your applications. App Mesh gives you consistent visibility and network traffic controls for every microservice in an application. You can use App Mesh with Amazon Web Services Fargate, Amazon ECS, Amazon EKS, Kubernetes on Amazon Web Services, and Amazon EC2. App Mesh supports microservice applications that use service discovery naming for their components. For more information about service discovery on Amazon ECS, see Service Discovery in the Amazon Elastic Container Service Developer Guide. Kubernetes kube-dns and coredns are supported. For more information, see DNS for Services and Pods in the Kubernetes documentation.
The Amazon Braket API Reference provides information about the operations and structures supported in Amazon Braket.

Alexa For Business

Alexa for Business helps you use Alexa in your organization. Alexa for Business provides you with the tools to manage Alexa devices, enroll your users, and assign skills, at scale. You can build your own context-aware voice skills using the Alexa Skills Kit and the Alexa for Business API operations. You can also make these available as private skills for your organization. Alexa for Business makes it efficient to voice-enable your products and services, thus providing context-aware voice experiences for your customers. Device makers building with the Alexa Voice Service (AVS) can create fully integrated solutions, register their products with Alexa for Business, and manage them as shared devices in their organization.

AWS Auto Scaling Plans

AWS Auto Scaling Use AWS Auto Scaling to create scaling plans for your applications to automatically scale your scalable AWS resources. API Summary You can use the AWS Auto Scaling service API to accomplish the following tasks: Create and manage scaling plans Define target tracking scaling policies to dynamically scale your resources based on utilization Scale Amazon EC2 Auto Scaling groups using predictive scaling and dynamic scaling to scale your Amazon EC2 capacity faster Set minimum and maximum capacity limits Retrieve information on existing scaling plans Access current forecast data and historical forecast data for up to 56 days previous To learn more about AWS Auto Scaling, including information about granting IAM users required permissions for AWS Auto Scaling actions, see the AWS Auto Scaling User Guide.

AWS DataSync

DataSync DataSync is a managed data transfer service that makes it simpler for you to automate moving data between on-premises storage and Amazon Simple Storage Service (Amazon S3) or Amazon Elastic File System (Amazon EFS). This API interface reference for DataSync contains documentation for a programming interface that you can use to manage DataSync.

Other APIs in the same category

AWS Proton

This is the AWS Proton Service API Reference. It provides descriptions, syntax and usage examples for each of the actions and data types for the AWS Proton service. The documentation for each action shows the Query API request parameters and the XML response. Alternatively, you can use the AWS CLI to access an API. For more information, see the AWS Command Line Interface User Guide. The AWS Proton service is a two-pronged automation framework. Administrators create service templates to provide standardized infrastructure and deployment tooling for serverless and container based applications. Developers, in turn, select from the available service templates to automate their application or service deployments. Because administrators define the infrastructure and tooling that AWS Proton deploys and manages, they need permissions to use all of the listed API operations. When developers select a specific infrastructure and tooling set, AWS Proton deploys their applications. To monitor their applications that are running on AWS Proton, developers need permissions to the service create, list, update and delete API operations and the service instance list and update API operations. To learn more about AWS Proton administration, see the AWS Proton Administrator Guide. To learn more about deploying serverless and containerized applications on AWS Proton, see the AWS Proton User Guide. Ensuring Idempotency When you make a mutating API request, the request typically returns a result before the asynchronous workflows of the operation are complete. Operations might also time out or encounter other server issues before they're complete, even if the request already returned a result. This might make it difficult to determine whether the request succeeded. Moreover, you might need to retry the request multiple times to ensure that the operation completes successfully. However, if the original request and the subsequent retries are successful, the operation occurs multiple times. This means that you might create more resources than you intended. Idempotency ensures that an API request action completes no more than one time. With an idempotent request, if the original request action completes successfully, any subsequent retries complete successfully without performing any further actions. However, the result might contain updated information, such as the current creation status. The following lists of APIs are grouped according to methods that ensure idempotency. Idempotent create APIs with a client token The API actions in this list support idempotency with the use of a client token. The corresponding AWS CLI commands also support idempotency using a client token. A client token is a unique, case-sensitive string of up to 64 ASCII characters. To make an idempotent API request using one of these actions, specify a client token in the request. We recommend that you don't reuse the same client token for other API requests. If you don’t provide a client token for these APIs, a default client token is automatically provided by SDKs. Given a request action that has succeeded: If you retry the request using the same client token and the same parameters, the retry succeeds without performing any further actions other than returning the original resource detail data in the response. If you retry the request using the same client token, but one or more of the parameters are different, the retry throws a ValidationException with an IdempotentParameterMismatch error. Client tokens expire eight hours after a request is made. If you retry the request with the expired token, a new resource is created. If the original resource is deleted and you retry the request, a new resource is created. Idempotent create APIs with a client token: CreateEnvironmentTemplateVersion CreateServiceTemplateVersion CreateEnvironmentAccountConnection Idempotent create APIs Given a request action that has succeeded: If you retry the request with an API from this group, and the original resource hasn't been modified, the retry succeeds without performing any further actions other than returning the original resource detail data in the response. If the original resource has been modified, the retry throws a ConflictException. If you retry with different input parameters, the retry throws a ValidationException with an IdempotentParameterMismatch error. Idempotent create APIs: CreateEnvironmentTemplate CreateServiceTemplate CreateEnvironment CreateService Idempotent delete APIs Given a request action that has succeeded: When you retry the request with an API from this group and the resource was deleted, its metadata is returned in the response. If you retry and the resource doesn't exist, the response is empty. In both cases, the retry succeeds. Idempotent delete APIs: DeleteEnvironmentTemplate DeleteEnvironmentTemplateVersion DeleteServiceTemplate DeleteServiceTemplateVersion DeleteEnvironmentAccountConnection Asynchronous idempotent delete APIs Given a request action that has succeeded: If you retry the request with an API from this group, if the original request delete operation status is DELETEINPROGRESS, the retry returns the resource detail data in the response without performing any further actions. If the original request delete operation is complete, a retry returns an empty response. Asynchronous idempotent delete APIs: DeleteEnvironment DeleteService

Amazon Chime

The Amazon Chime API (application programming interface) is designed for developers to perform key tasks, such as creating and managing Amazon Chime accounts, users, and Voice Connectors. This guide provides detailed information about the Amazon Chime API, including operations, types, inputs and outputs, and error codes. It also includes some server-side API actions to use with the Amazon Chime SDK. For more information about the Amazon Chime SDK, see Using the Amazon Chime SDK in the Amazon Chime Developer Guide. You can use an AWS SDK, the AWS Command Line Interface (AWS CLI), or the REST API to make API calls. We recommend using an AWS SDK or the AWS CLI. Each API operation includes links to information about using it with a language-specific AWS SDK or the AWS CLI. Using an AWS SDK You don't need to write code to calculate a signature for request authentication. The SDK clients authenticate your requests by using access keys that you provide. For more information about AWS SDKs, see the AWS Developer Center. Using the AWS CLI Use your access keys with the AWS CLI to make API calls. For information about setting up the AWS CLI, see Installing the AWS Command Line Interface in the AWS Command Line Interface User Guide. For a list of available Amazon Chime commands, see the Amazon Chime commands in the AWS CLI Command Reference. Using REST APIs If you use REST to make API calls, you must authenticate your request by providing a signature. Amazon Chime supports signature version 4. For more information, see Signature Version 4 Signing Process in the Amazon Web Services General Reference. When making REST API calls, use the service name chime and REST endpoint https://service.chime.aws.amazon.com. Administrative permissions are controlled using AWS Identity and Access Management (IAM). For more information, see Identity and Access Management for Amazon Chime in the Amazon Chime Administration Guide.

AWS CodeStar

AWS CodeStar This is the API reference for AWS CodeStar. This reference provides descriptions of the operations and data types for the AWS CodeStar API along with usage examples. You can use the AWS CodeStar API to work with: Projects and their resources, by calling the following: DeleteProject, which deletes a project. DescribeProject, which lists the attributes of a project. ListProjects, which lists all projects associated with your AWS account. ListResources, which lists the resources associated with a project. ListTagsForProject, which lists the tags associated with a project. TagProject, which adds tags to a project. UntagProject, which removes tags from a project. UpdateProject, which updates the attributes of a project. Teams and team members, by calling the following: AssociateTeamMember, which adds an IAM user to the team for a project. DisassociateTeamMember, which removes an IAM user from the team for a project. ListTeamMembers, which lists all the IAM users in the team for a project, including their roles and attributes. UpdateTeamMember, which updates a team member's attributes in a project. Users, by calling the following: CreateUserProfile, which creates a user profile that contains data associated with the user across all projects. DeleteUserProfile, which deletes all user profile information across all projects. DescribeUserProfile, which describes the profile of a user. ListUserProfiles, which lists all user profiles. UpdateUserProfile, which updates the profile for a user.

Managed Streaming for Kafka

The operations for managing an Amazon MSK cluster.

AWS Mobile

AWS Mobile Service provides mobile app and website developers with capabilities required to configure AWS resources and bootstrap their developer desktop projects with the necessary SDKs, constants, tools and samples to make use of those resources.

EC2 Image Builder

EC2 Image Builder is a fully managed Amazon Web Services service that makes it easier to automate the creation, management, and deployment of customized, secure, and up-to-date "golden" server images that are pre-installed and pre-configured with software and settings to meet specific IT standards.

AWS Key Management Service

Key Management Service Key Management Service (KMS) is an encryption and key management web service. This guide describes the KMS operations that you can call programmatically. For general information about KMS, see the Key Management Service Developer Guide . KMS is replacing the term customer master key (CMK) with KMS key and KMS key. The concept has not changed. To prevent breaking changes, KMS is keeping some variations of this term. Amazon Web Services provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, macOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to KMS and other Amazon Web Services services. For example, the SDKs take care of tasks such as signing requests (see below), managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools for Amazon Web Services. We recommend that you use the Amazon Web Services SDKs to make programmatic API calls to KMS. Clients must support TLS (Transport Layer Security) 1.0. We recommend TLS 1.2. Clients must also support cipher suites with Perfect Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes. Signing Requests Requests must be signed by using an access key ID and a secret access key. We strongly recommend that you do not use your Amazon Web Services account (root) access key ID and secret key for everyday work with KMS. Instead, use the access key ID and secret access key for an IAM user. You can also use the Amazon Web Services Security Token Service to generate temporary security credentials that you can use to sign requests. All KMS operations require Signature Version 4. Logging API Requests KMS supports CloudTrail, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket that you specify. By using the information collected by CloudTrail, you can determine what requests were made to KMS, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to turn it on and find your log files, see the CloudTrail User Guide. Additional Resources For more information about credentials and request signing, see the following: Amazon Web Services Security Credentials - This topic provides general information about the types of credentials used to access Amazon Web Services. Temporary Security Credentials - This section of the IAM User Guide describes how to create and use temporary security credentials. Signature Version 4 Signing Process - This set of topics walks you through the process of signing a request using an access key ID and a secret access key. Commonly Used API Operations Of the API operations discussed in this guide, the following will prove the most useful for most applications. You will likely perform operations other than these, such as creating keys and assigning policies, by using the console. Encrypt Decrypt GenerateDataKey GenerateDataKeyWithoutPlaintext

Cosmos DB

azure.com
Azure Cosmos DB Database Service Resource Provider REST API

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

MicrosoftSerialConsoleClient

azure.com
The Azure Serial Console allows you to access the serial console of a Virtual Machine or VM scale set instance

RecoveryServicesBackupClient

azure.com

Security Center

azure.com
API spec for Microsoft.Security (Azure Security Center) resource provider