Mock sample for your project: Amazon Polly API

Integrate with "Amazon Polly API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Polly

amazonaws.com

Version: 2016-06-10


Use this API in your project

Integrate third-party APIs faster by using "Amazon Polly API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

Amazon Polly is a web service that makes it easy to synthesize speech from text. The Amazon Polly service provides API operations for synthesizing high-quality speech from plain text and Speech Synthesis Markup Language (SSML), along with managing pronunciations lexicons that enable you to get the best results for your application domain.

Other APIs by amazonaws.com

Amazon EMR Containers

Amazon EMR on EKS provides a deployment option for Amazon EMR that allows you to run open-source big data frameworks on Amazon Elastic Kubernetes Service (Amazon EKS). With this deployment option, you can focus on running analytics workloads while Amazon EMR on EKS builds, configures, and manages containers for open-source applications. For more information about Amazon EMR on EKS concepts and tasks, see What is Amazon EMR on EKS. Amazon EMR containers is the API name for Amazon EMR on EKS. The emr-containers prefix is used in the following scenarios: It is the prefix in the CLI commands for Amazon EMR on EKS. For example, aws emr-containers start-job-run. It is the prefix before IAM policy actions for Amazon EMR on EKS. For example,"Action": [ "emr-containers:StartJobRun"]. For more information, see Policy actions for Amazon EMR on EKS. It is the prefix used in Amazon EMR on EKS service endpoints. For example, emr-containers.us-east-2.amazonaws.com. For more information, see Amazon EMR on EKS Service Endpoints.

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

Amazon Comprehend

Amazon Comprehend is an AWS service for gaining insight into the content of documents. Use these actions to determine the topics contained in your documents, the topics they discuss, the predominant sentiment expressed in them, the predominant language used, and more.

Amazon Mechanical Turk

Amazon Mechanical Turk API Reference

Amazon Kinesis Analytics

Amazon Kinesis Data Analytics is a fully managed service that you can use to process and analyze streaming data using Java, SQL, or Scala. The service enables you to quickly author and run Java, SQL, or Scala code against streaming sources to perform time series analytics, feed real-time dashboards, and create real-time metrics.

Amazon Machine Learning

Definition of the public APIs exposed by Amazon Machine Learning

AWS Resource Groups

AWS Resource Groups AWS Resource Groups lets you organize AWS resources such as Amazon EC2 instances, Amazon Relational Database Service databases, and Amazon S3 buckets into groups using criteria that you define as tags. A resource group is a collection of resources that match the resource types specified in a query, and share one or more tags or portions of tags. You can create a group of resources based on their roles in your cloud infrastructure, lifecycle stages, regions, application layers, or virtually any criteria. Resource Groups enable you to automate management tasks, such as those in AWS Systems Manager Automation documents, on tag-related resources in AWS Systems Manager. Groups of tagged resources also let you quickly view a custom console in AWS Systems Manager that shows AWS Config compliance and other monitoring data about member resources. To create a resource group, build a resource query, and specify tags that identify the criteria that members of the group have in common. Tags are key-value pairs. For more information about Resource Groups, see the AWS Resource Groups User Guide. AWS Resource Groups uses a REST-compliant API that you can use to perform the following types of operations. Create, Read, Update, and Delete (CRUD) operations on resource groups and resource query entities Applying, editing, and removing tags from resource groups Resolving resource group member ARNs so they can be returned as search results Getting data about resources that are members of a group Searching AWS resources based on a resource query

AWS Key Management Service

Key Management Service Key Management Service (KMS) is an encryption and key management web service. This guide describes the KMS operations that you can call programmatically. For general information about KMS, see the Key Management Service Developer Guide . KMS is replacing the term customer master key (CMK) with KMS key and KMS key. The concept has not changed. To prevent breaking changes, KMS is keeping some variations of this term. Amazon Web Services provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, macOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to KMS and other Amazon Web Services services. For example, the SDKs take care of tasks such as signing requests (see below), managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools for Amazon Web Services. We recommend that you use the Amazon Web Services SDKs to make programmatic API calls to KMS. Clients must support TLS (Transport Layer Security) 1.0. We recommend TLS 1.2. Clients must also support cipher suites with Perfect Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes. Signing Requests Requests must be signed by using an access key ID and a secret access key. We strongly recommend that you do not use your Amazon Web Services account (root) access key ID and secret key for everyday work with KMS. Instead, use the access key ID and secret access key for an IAM user. You can also use the Amazon Web Services Security Token Service to generate temporary security credentials that you can use to sign requests. All KMS operations require Signature Version 4. Logging API Requests KMS supports CloudTrail, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket that you specify. By using the information collected by CloudTrail, you can determine what requests were made to KMS, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to turn it on and find your log files, see the CloudTrail User Guide. Additional Resources For more information about credentials and request signing, see the following: Amazon Web Services Security Credentials - This topic provides general information about the types of credentials used to access Amazon Web Services. Temporary Security Credentials - This section of the IAM User Guide describes how to create and use temporary security credentials. Signature Version 4 Signing Process - This set of topics walks you through the process of signing a request using an access key ID and a secret access key. Commonly Used API Operations Of the API operations discussed in this guide, the following will prove the most useful for most applications. You will likely perform operations other than these, such as creating keys and assigning policies, by using the console. Encrypt Decrypt GenerateDataKey GenerateDataKeyWithoutPlaintext

AWS Support

AWS Support The AWS Support API Reference is intended for programmers who need detailed information about the AWS Support operations and data types. You can use the API to manage your support cases programmatically. The AWS Support API uses HTTP methods that return results in JSON format. You must have a Business or Enterprise Support plan to use the AWS Support API. If you call the AWS Support API from an account that does not have a Business or Enterprise Support plan, the SubscriptionRequiredException error message appears. For information about changing your support plan, see AWS Support. The AWS Support service also exposes a set of AWS Trusted Advisor features. You can retrieve a list of checks and their descriptions, get check results, specify checks to refresh, and get the refresh status of checks. The following list describes the AWS Support case management operations: Service names, issue categories, and available severity levels - The DescribeServices and DescribeSeverityLevels operations return AWS service names, service codes, service categories, and problem severity levels. You use these values when you call the CreateCase operation. Case creation, case details, and case resolution - The CreateCase, DescribeCases, DescribeAttachment, and ResolveCase operations create AWS Support cases, retrieve information about cases, and resolve cases. Case communication - The DescribeCommunications, AddCommunicationToCase, and AddAttachmentsToSet operations retrieve and add communications and attachments to AWS Support cases. The following list describes the operations available from the AWS Support service for Trusted Advisor: DescribeTrustedAdvisorChecks returns the list of checks that run against your AWS resources. Using the checkId for a specific check returned by DescribeTrustedAdvisorChecks, you can call DescribeTrustedAdvisorCheckResult to obtain the results for the check that you specified. DescribeTrustedAdvisorCheckSummaries returns summarized results for one or more Trusted Advisor checks. RefreshTrustedAdvisorCheck requests that Trusted Advisor rerun a specified check. DescribeTrustedAdvisorCheckRefreshStatuses reports the refresh status of one or more checks. For authentication of requests, AWS Support uses Signature Version 4 Signing Process. See About the AWS Support API in the AWS Support User Guide for information about how to use this service to create and manage your support cases, and how to call Trusted Advisor for results of checks on your resources.

Amazon SageMaker Feature Store Runtime

Contains all data plane API operations and data types for the Amazon SageMaker Feature Store. Use this API to put, delete, and retrieve (get) features from a feature store. Use the following operations to configure your OnlineStore and OfflineStore features, and to create and manage feature groups: CreateFeatureGroup DeleteFeatureGroup DescribeFeatureGroup ListFeatureGroups

AWS Auto Scaling Plans

AWS Auto Scaling Use AWS Auto Scaling to create scaling plans for your applications to automatically scale your scalable AWS resources. API Summary You can use the AWS Auto Scaling service API to accomplish the following tasks: Create and manage scaling plans Define target tracking scaling policies to dynamically scale your resources based on utilization Scale Amazon EC2 Auto Scaling groups using predictive scaling and dynamic scaling to scale your Amazon EC2 capacity faster Set minimum and maximum capacity limits Retrieve information on existing scaling plans Access current forecast data and historical forecast data for up to 56 days previous To learn more about AWS Auto Scaling, including information about granting IAM users required permissions for AWS Auto Scaling actions, see the AWS Auto Scaling User Guide.

AWS Global Accelerator

AWS Global Accelerator This is the AWS Global Accelerator API Reference. This guide is for developers who need detailed information about AWS Global Accelerator API actions, data types, and errors. For more information about Global Accelerator features, see the AWS Global Accelerator Developer Guide. AWS Global Accelerator is a service in which you create accelerators to improve the performance of your applications for local and global users. Depending on the type of accelerator you choose, you can gain additional benefits. By using a standard accelerator, you can improve availability of your internet applications that are used by a global audience. With a standard accelerator, Global Accelerator directs traffic to optimal endpoints over the AWS global network. For other scenarios, you might choose a custom routing accelerator. With a custom routing accelerator, you can use application logic to directly map one or more users to a specific endpoint among many endpoints. Global Accelerator is a global service that supports endpoints in multiple AWS Regions but you must specify the US West (Oregon) Region to create or update accelerators. By default, Global Accelerator provides you with two static IP addresses that you associate with your accelerator. With a standard accelerator, instead of using the IP addresses that Global Accelerator provides, you can configure these entry points to be IPv4 addresses from your own IP address ranges that you bring to Global Accelerator. The static IP addresses are anycast from the AWS edge network. For a standard accelerator, they distribute incoming application traffic across multiple endpoint resources in multiple AWS Regions, which increases the availability of your applications. Endpoints for standard accelerators can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses that are located in one AWS Region or multiple Regions. For custom routing accelerators, you map traffic that arrives to the static IP addresses to specific Amazon EC2 servers in endpoints that are virtual private cloud (VPC) subnets. The static IP addresses remain assigned to your accelerator for as long as it exists, even if you disable the accelerator and it no longer accepts or routes traffic. However, when you delete an accelerator, you lose the static IP addresses that are assigned to it, so you can no longer route traffic by using them. You can use IAM policies like tag-based permissions with Global Accelerator to limit the users who have permissions to delete an accelerator. For more information, see Tag-based policies. For standard accelerators, Global Accelerator uses the AWS global network to route traffic to the optimal regional endpoint based on health, client location, and policies that you configure. The service reacts instantly to changes in health or configuration to ensure that internet traffic from clients is always directed to healthy endpoints. For a list of the AWS Regions where Global Accelerator and other services are currently supported, see the AWS Region Table. AWS Global Accelerator includes the following components: Static IP addresses Global Accelerator provides you with a set of two static IP addresses that are anycast from the AWS edge network. If you bring your own IP address range to AWS (BYOIP) to use with a standard accelerator, you can instead assign IP addresses from your own pool to use with your accelerator. For more information, see Bring your own IP addresses (BYOIP) in AWS Global Accelerator. The IP addresses serve as single fixed entry points for your clients. If you already have Elastic Load Balancing load balancers, Amazon EC2 instances, or Elastic IP address resources set up for your applications, you can easily add those to a standard accelerator in Global Accelerator. This allows Global Accelerator to use static IP addresses to access the resources. The static IP addresses remain assigned to your accelerator for as long as it exists, even if you disable the accelerator and it no longer accepts or routes traffic. However, when you delete an accelerator, you lose the static IP addresses that are assigned to it, so you can no longer route traffic by using them. You can use IAM policies like tag-based permissions with Global Accelerator to delete an accelerator. For more information, see Tag-based policies. Accelerator An accelerator directs traffic to endpoints over the AWS global network to improve the performance of your internet applications. Each accelerator includes one or more listeners. There are two types of accelerators: A standard accelerator directs traffic to the optimal AWS endpoint based on several factors, including the user’s location, the health of the endpoint, and the endpoint weights that you configure. This improves the availability and performance of your applications. Endpoints can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses. A custom routing accelerator directs traffic to one of possibly thousands of Amazon EC2 instances running in a single or multiple virtual private clouds (VPCs). With custom routing, listener ports are mapped to statically associate port ranges with VPC subnets, which allows Global Accelerator to determine an EC2 instance IP address at the time of connection. By default, all port mapping destinations in a VPC subnet can't receive traffic. You can choose to configure all destinations in the subnet to receive traffic, or to specify individual port mappings that can receive traffic. For more information, see Types of accelerators. DNS name Global Accelerator assigns each accelerator a default Domain Name System (DNS) name, similar to a1234567890abcdef.awsglobalaccelerator.com, that points to the static IP addresses that Global Accelerator assigns to you or that you choose from your own IP address range. Depending on the use case, you can use your accelerator's static IP addresses or DNS name to route traffic to your accelerator, or set up DNS records to route traffic using your own custom domain name. Network zone A network zone services the static IP addresses for your accelerator from a unique IP subnet. Similar to an AWS Availability Zone, a network zone is an isolated unit with its own set of physical infrastructure. When you configure an accelerator, by default, Global Accelerator allocates two IPv4 addresses for it. If one IP address from a network zone becomes unavailable due to IP address blocking by certain client networks, or network disruptions, then client applications can retry on the healthy static IP address from the other isolated network zone. Listener A listener processes inbound connections from clients to Global Accelerator, based on the port (or port range) and protocol (or protocols) that you configure. A listener can be configured for TCP, UDP, or both TCP and UDP protocols. Each listener has one or more endpoint groups associated with it, and traffic is forwarded to endpoints in one of the groups. You associate endpoint groups with listeners by specifying the Regions that you want to distribute traffic to. With a standard accelerator, traffic is distributed to optimal endpoints within the endpoint groups associated with a listener. Endpoint group Each endpoint group is associated with a specific AWS Region. Endpoint groups include one or more endpoints in the Region. With a standard accelerator, you can increase or reduce the percentage of traffic that would be otherwise directed to an endpoint group by adjusting a setting called a traffic dial. The traffic dial lets you easily do performance testing or blue/green deployment testing, for example, for new releases across different AWS Regions. Endpoint An endpoint is a resource that Global Accelerator directs traffic to. Endpoints for standard accelerators can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses. An Application Load Balancer endpoint can be internet-facing or internal. Traffic for standard accelerators is routed to endpoints based on the health of the endpoint along with configuration options that you choose, such as endpoint weights. For each endpoint, you can configure weights, which are numbers that you can use to specify the proportion of traffic to route to each one. This can be useful, for example, to do performance testing within a Region. Endpoints for custom routing accelerators are virtual private cloud (VPC) subnets with one or many EC2 instances.

Other APIs in the same category

BlueprintClient

azure.com
Azure Blueprints Client provides access to blueprint definitions, assignments, and artifacts, and related blueprint operations.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

AWS Migration Hub

The AWS Migration Hub API methods help to obtain server and application migration status and integrate your resource-specific migration tool by providing a programmatic interface to Migration Hub. Remember that you must set your AWS Migration Hub home region before you call any of these APIs, or a HomeRegionNotSetException error will be returned. Also, you must make the API calls while in your home region.
The Amazon Braket API Reference provides information about the operations and structures supported in Amazon Braket.

Amazon CloudSearch

Amazon CloudSearch Configuration Service You use the Amazon CloudSearch configuration service to create, configure, and manage search domains. Configuration service requests are submitted using the AWS Query protocol. AWS Query requests are HTTP or HTTPS requests submitted via HTTP GET or POST with a query parameter named Action. The endpoint for configuration service requests is region-specific: cloudsearch. region.amazonaws.com. For example, cloudsearch.us-east-1.amazonaws.com. For a current list of supported regions and endpoints, see Regions and Endpoints.

Amazon Mechanical Turk

Amazon Mechanical Turk API Reference

AWS Network Manager

Transit Gateway Network Manager (Network Manager) enables you to create a global network, in which you can monitor your AWS and on-premises networks that are built around transit gateways. The Network Manager APIs are supported in the US West (Oregon) Region only. You must specify the us-west-2 Region in all requests made to Network Manager.

HDInsightManagementClient

azure.com
The HDInsight Management Client.

AmazonNimbleStudio

AWS CloudHSM V2

For more information about AWS CloudHSM, see AWS CloudHSM and the AWS CloudHSM User Guide.

Azure Machine Learning Datastore Management Client

azure.com

AuthorizationManagementClient

azure.com
Role based access control provides you a way to apply granular level policy administration down to individual resources or resource groups. These operations allow you to manage role definitions. A role definition describes the set of actions that can be performed on resources.