Mock sample for your project: Amazon Personalize Events API

Integrate with "Amazon Personalize Events API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Personalize Events

amazonaws.com

Version: 2018-03-22


Use this API in your project

Integrate third-party APIs faster by using "Amazon Personalize Events API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

Amazon Personalize can consume real-time user event data, such as stream or click data, and use it for model training either alone or combined with historical data. For more information see Recording Events.

Other APIs by amazonaws.com

AWS Route53 Recovery Control Config

Recovery Control Configuration API Reference for Amazon Route 53 Application Recovery Controller

AmazonApiGatewayManagementApi

The Amazon API Gateway Management API allows you to directly manage runtime aspects of your deployed APIs. To use it, you must explicitly set the SDK's endpoint to point to the endpoint of your deployed API. The endpoint will be of the form https://{api-id}.execute-api.{region}.amazonaws.com/{stage}, or will be the endpoint corresponding to your API's custom domain and base path, if applicable.

AWS DataSync

DataSync DataSync is a managed data transfer service that makes it simpler for you to automate moving data between on-premises storage and Amazon Simple Storage Service (Amazon S3) or Amazon Elastic File System (Amazon EFS). This API interface reference for DataSync contains documentation for a programming interface that you can use to manage DataSync.

AWS AppSync

AppSync provides API actions for creating and interacting with data sources using GraphQL from your application.

AWS Identity and Access Management

Identity and Access Management Identity and Access Management (IAM) is a web service for securely controlling access to Amazon Web Services services. With IAM, you can centrally manage users, security credentials such as access keys, and permissions that control which Amazon Web Services resources users and applications can access. For more information about IAM, see Identity and Access Management (IAM) and the Identity and Access Management User Guide.

Amazon Athena

Amazon Athena is an interactive query service that lets you use standard SQL to analyze data directly in Amazon S3. You can point Athena at your data in Amazon S3 and run ad-hoc queries and get results in seconds. Athena is serverless, so there is no infrastructure to set up or manage. You pay only for the queries you run. Athena scales automatically—executing queries in parallel—so results are fast, even with large datasets and complex queries. For more information, see What is Amazon Athena in the Amazon Athena User Guide. If you connect to Athena using the JDBC driver, use version 1.1.0 of the driver or later with the Amazon Athena API. Earlier version drivers do not support the API. For more information and to download the driver, see Accessing Amazon Athena with JDBC. For code samples using the Amazon Web Services SDK for Java, see Examples and Code Samples in the Amazon Athena User Guide.

AWS CloudFormation

AWS CloudFormation CloudFormation allows you to create and manage Amazon Web Services infrastructure deployments predictably and repeatedly. You can use CloudFormation to leverage Amazon Web Services products, such as Amazon Elastic Compute Cloud, Amazon Elastic Block Store, Amazon Simple Notification Service, Elastic Load Balancing, and Auto Scaling to build highly-reliable, highly scalable, cost-effective applications without creating or configuring the underlying Amazon Web Services infrastructure. With CloudFormation, you declare all of your resources and dependencies in a template file. The template defines a collection of resources as a single unit called a stack. CloudFormation creates and deletes all member resources of the stack together and manages all dependencies between the resources for you. For more information about CloudFormation, see the CloudFormation Product Page. CloudFormation makes use of other Amazon Web Services products. If you need additional technical information about a specific Amazon Web Services product, you can find the product's technical documentation at docs.aws.amazon.com .

AWS Cost and Usage Report Service

The AWS Cost and Usage Report API enables you to programmatically create, query, and delete AWS Cost and Usage report definitions. AWS Cost and Usage reports track the monthly AWS costs and usage associated with your AWS account. The report contains line items for each unique combination of AWS product, usage type, and operation that your AWS account uses. You can configure the AWS Cost and Usage report to show only the data that you want, using the AWS Cost and Usage API. Service Endpoint The AWS Cost and Usage Report API provides the following endpoint: cur.us-east-1.amazonaws.com

AWS IoT Things Graph

AWS IoT Things Graph AWS IoT Things Graph provides an integrated set of tools that enable developers to connect devices and services that use different standards, such as units of measure and communication protocols. AWS IoT Things Graph makes it possible to build IoT applications with little to no code by connecting devices and services and defining how they interact at an abstract level. For more information about how AWS IoT Things Graph works, see the User Guide.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

AWS Direct Connect

Direct Connect links your internal network to an Direct Connect location over a standard Ethernet fiber-optic cable. One end of the cable is connected to your router, the other to an Direct Connect router. With this connection in place, you can create virtual interfaces directly to the Cloud (for example, to Amazon EC2 and Amazon S3) and to Amazon VPC, bypassing Internet service providers in your network path. A connection provides access to all Regions except the China (Beijing) and (China) Ningxia Regions. Amazon Web Services resources in the China Regions can only be accessed through locations associated with those Regions.

Amazon ElastiCache

Amazon ElastiCache Amazon ElastiCache is a web service that makes it easier to set up, operate, and scale a distributed cache in the cloud. With ElastiCache, customers get all of the benefits of a high-performance, in-memory cache with less of the administrative burden involved in launching and managing a distributed cache. The service makes setup, scaling, and cluster failure handling much simpler than in a self-managed cache deployment. In addition, through integration with Amazon CloudWatch, customers get enhanced visibility into the key performance statistics associated with their cache and can receive alarms if a part of their cache runs hot.

Other APIs in the same category

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

Certificates API Client

azure.com
Glue Defines the public endpoint for the Glue service.

AWS Batch

Batch Using Batch, you can run batch computing workloads on the Cloud. Batch computing is a common means for developers, scientists, and engineers to access large amounts of compute resources. Batch uses the advantages of this computing workload to remove the undifferentiated heavy lifting of configuring and managing required infrastructure. At the same time, it also adopts a familiar batch computing software approach. Given these advantages, Batch can help you to efficiently provision resources in response to jobs submitted, thus effectively helping you to eliminate capacity constraints, reduce compute costs, and deliver your results more quickly. As a fully managed service, Batch can run batch computing workloads of any scale. Batch automatically provisions compute resources and optimizes workload distribution based on the quantity and scale of your specific workloads. With Batch, there's no need to install or manage batch computing software. This means that you can focus your time and energy on analyzing results and solving your specific problems.

Amazon Elastic Inference

Elastic Inference public APIs.

Amazon Connect Contact Lens

Contact Lens for Amazon Connect enables you to analyze conversations between customer and agents, by using speech transcription, natural language processing, and intelligent search capabilities. It performs sentiment analysis, detects issues, and enables you to automatically categorize contacts. Contact Lens for Amazon Connect provides both real-time and post-call analytics of customer-agent conversations. For more information, see Analyze conversations using Contact Lens in the Amazon Connect Administrator Guide.

AWS Ground Station

Welcome to the AWS Ground Station API Reference. AWS Ground Station is a fully managed service that enables you to control satellite communications, downlink and process satellite data, and scale your satellite operations efficiently and cost-effectively without having to build or manage your own ground station infrastructure.

AWS CodeDeploy

AWS CodeDeploy AWS CodeDeploy is a deployment service that automates application deployments to Amazon EC2 instances, on-premises instances running in your own facility, serverless AWS Lambda functions, or applications in an Amazon ECS service. You can deploy a nearly unlimited variety of application content, such as an updated Lambda function, updated applications in an Amazon ECS service, code, web and configuration files, executables, packages, scripts, multimedia files, and so on. AWS CodeDeploy can deploy application content stored in Amazon S3 buckets, GitHub repositories, or Bitbucket repositories. You do not need to make changes to your existing code before you can use AWS CodeDeploy. AWS CodeDeploy makes it easier for you to rapidly release new features, helps you avoid downtime during application deployment, and handles the complexity of updating your applications, without many of the risks associated with error-prone manual deployments. AWS CodeDeploy Components Use the information in this guide to help you work with the following AWS CodeDeploy components: Application : A name that uniquely identifies the application you want to deploy. AWS CodeDeploy uses this name, which functions as a container, to ensure the correct combination of revision, deployment configuration, and deployment group are referenced during a deployment. Deployment group : A set of individual instances, CodeDeploy Lambda deployment configuration settings, or an Amazon ECS service and network details. A Lambda deployment group specifies how to route traffic to a new version of a Lambda function. An Amazon ECS deployment group specifies the service created in Amazon ECS to deploy, a load balancer, and a listener to reroute production traffic to an updated containerized application. An EC2/On-premises deployment group contains individually tagged instances, Amazon EC2 instances in Amazon EC2 Auto Scaling groups, or both. All deployment groups can specify optional trigger, alarm, and rollback settings. Deployment configuration : A set of deployment rules and deployment success and failure conditions used by AWS CodeDeploy during a deployment. Deployment : The process and the components used when updating a Lambda function, a containerized application in an Amazon ECS service, or of installing content on one or more instances. Application revisions : For an AWS Lambda deployment, this is an AppSpec file that specifies the Lambda function to be updated and one or more functions to validate deployment lifecycle events. For an Amazon ECS deployment, this is an AppSpec file that specifies the Amazon ECS task definition, container, and port where production traffic is rerouted. For an EC2/On-premises deployment, this is an archive file that contains source content—source code, webpages, executable files, and deployment scripts—along with an AppSpec file. Revisions are stored in Amazon S3 buckets or GitHub repositories. For Amazon S3, a revision is uniquely identified by its Amazon S3 object key and its ETag, version, or both. For GitHub, a revision is uniquely identified by its commit ID. This guide also contains information to help you get details about the instances in your deployments, to make on-premises instances available for AWS CodeDeploy deployments, to get details about a Lambda function deployment, and to get details about Amazon ECS service deployments. AWS CodeDeploy Information Resources AWS CodeDeploy User Guide AWS CodeDeploy API Reference Guide AWS CLI Reference for AWS CodeDeploy AWS CodeDeploy Developer Forum

AzureBridgeAdminClient

azure.com
AzureBridge Admin Client.

Platform API

The REST API specification for Ably.

Amazon Prometheus Service

Amazon Managed Service for Prometheus

AWS Cost Explorer Service

You can use the Cost Explorer API to programmatically query your cost and usage data. You can query for aggregated data such as total monthly costs or total daily usage. You can also query for granular data. This might include the number of daily write operations for Amazon DynamoDB database tables in your production environment. Service Endpoint The Cost Explorer API provides the following endpoint: https://ce.us-east-1.amazonaws.com For information about the costs that are associated with the Cost Explorer API, see Amazon Web Services Cost Management Pricing.