Mock sample for your project: Amazon Cognito Identity Provider API

Integrate with "Amazon Cognito Identity Provider API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Cognito Identity Provider

amazonaws.com

Version: 2016-04-18


Use this API in your project

Integrate third-party APIs faster by using "Amazon Cognito Identity Provider API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

Using the Amazon Cognito User Pools API, you can create a user pool to manage directories and users. You can authenticate a user to obtain tokens related to user identity and access policies. This API reference provides information about user pools in Amazon Cognito User Pools. For more information, see the Amazon Cognito Documentation.

Other APIs by amazonaws.com

AWS SSO Identity Store

The AWS Single Sign-On (SSO) Identity Store service provides a single place to retrieve all of your identities (users and groups). For more information about AWS, see the AWS Single Sign-On User Guide.

AWS Comprehend Medical

Amazon Comprehend Medical extracts structured information from unstructured clinical text. Use these actions to gain insight in your documents.

Amazon Simple Workflow Service

Amazon Simple Workflow Service The Amazon Simple Workflow Service (Amazon SWF) makes it easy to build applications that use Amazon's cloud to coordinate work across distributed components. In Amazon SWF, a task represents a logical unit of work that is performed by a component of your workflow. Coordinating tasks in a workflow involves managing intertask dependencies, scheduling, and concurrency in accordance with the logical flow of the application. Amazon SWF gives you full control over implementing tasks and coordinating them without worrying about underlying complexities such as tracking their progress and maintaining their state. This documentation serves as reference only. For a broader overview of the Amazon SWF programming model, see the Amazon SWF Developer Guide .

Amazon CodeGuru Profiler

This section provides documentation for the Amazon CodeGuru Profiler API operations. Amazon CodeGuru Profiler collects runtime performance data from your live applications, and provides recommendations that can help you fine-tune your application performance. Using machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of code and suggest ways you can improve efficiency and remove CPU bottlenecks. Amazon CodeGuru Profiler provides different visualizations of profiling data to help you identify what code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU utilization. Amazon CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM) languages and Python. While CodeGuru Profiler supports both visualizations and recommendations for applications written in Java, it can also generate visualizations and a subset of recommendations for applications written in other JVM languages and Python. For more information, see What is Amazon CodeGuru Profiler in the Amazon CodeGuru Profiler User Guide.

AWS Resource Groups Tagging API

Resource Groups Tagging API

Amazon CloudWatch Events

Amazon EventBridge helps you to respond to state changes in your Amazon Web Services resources. When your resources change state, they automatically send events to an event stream. You can create rules that match selected events in the stream and route them to targets to take action. You can also use rules to take action on a predetermined schedule. For example, you can configure rules to: Automatically invoke an Lambda function to update DNS entries when an event notifies you that Amazon EC2 instance enters the running state. Direct specific API records from CloudTrail to an Amazon Kinesis data stream for detailed analysis of potential security or availability risks. Periodically invoke a built-in target to create a snapshot of an Amazon EBS volume. For more information about the features of Amazon EventBridge, see the Amazon EventBridge User Guide.

Amazon Neptune

Amazon Neptune Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. The core of Amazon Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with milliseconds latency. Amazon Neptune supports popular graph models Property Graph and W3C's RDF, and their respective query languages Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune powers graph use cases such as recommendation engines, fraud detection, knowledge graphs, drug discovery, and network security. This interface reference for Amazon Neptune contains documentation for a programming or command line interface you can use to manage Amazon Neptune. Note that Amazon Neptune is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide.

AWS Application Discovery Service

AWS Application Discovery Service AWS Application Discovery Service helps you plan application migration projects. It automatically identifies servers, virtual machines (VMs), and network dependencies in your on-premises data centers. For more information, see the AWS Application Discovery Service FAQ. Application Discovery Service offers three ways of performing discovery and collecting data about your on-premises servers: Agentless discovery is recommended for environments that use VMware vCenter Server. This mode doesn't require you to install an agent on each host. It does not work in non-VMware environments. Agentless discovery gathers server information regardless of the operating systems, which minimizes the time required for initial on-premises infrastructure assessment. Agentless discovery doesn't collect information about network dependencies, only agent-based discovery collects that information. Agent-based discovery collects a richer set of data than agentless discovery by using the AWS Application Discovery Agent, which you install on one or more hosts in your data center. The agent captures infrastructure and application information, including an inventory of running processes, system performance information, resource utilization, and network dependencies. The information collected by agents is secured at rest and in transit to the Application Discovery Service database in the cloud. AWS Partner Network (APN) solutions integrate with Application Discovery Service, enabling you to import details of your on-premises environment directly into Migration Hub without using the discovery connector or discovery agent. Third-party application discovery tools can query AWS Application Discovery Service, and they can write to the Application Discovery Service database using the public API. In this way, you can import data into Migration Hub and view it, so that you can associate applications with servers and track migrations. Recommendations We recommend that you use agent-based discovery for non-VMware environments, and whenever you want to collect information about network dependencies. You can run agent-based and agentless discovery simultaneously. Use agentless discovery to complete the initial infrastructure assessment quickly, and then install agents on select hosts to collect additional information. Working With This Guide This API reference provides descriptions, syntax, and usage examples for each of the actions and data types for Application Discovery Service. The topic for each action shows the API request parameters and the response. Alternatively, you can use one of the AWS SDKs to access an API that is tailored to the programming language or platform that you're using. For more information, see AWS SDKs. Remember that you must set your Migration Hub home region before you call any of these APIs. You must make API calls for write actions (create, notify, associate, disassociate, import, or put) while in your home region, or a HomeRegionNotSetException error is returned. API calls for read actions (list, describe, stop, and delete) are permitted outside of your home region. Although it is unlikely, the Migration Hub home region could change. If you call APIs outside the home region, an InvalidInputException is returned. You must call GetHomeRegion to obtain the latest Migration Hub home region. This guide is intended for use with the AWS Application Discovery Service User Guide. All data is handled according to the AWS Privacy Policy. You can operate Application Discovery Service offline to inspect collected data before it is shared with the service.

Amazon Elastic Block Store

You can use the Amazon Elastic Block Store (Amazon EBS) direct APIs to create Amazon EBS snapshots, write data directly to your snapshots, read data on your snapshots, and identify the differences or changes between two snapshots. If you’re an independent software vendor (ISV) who offers backup services for Amazon EBS, the EBS direct APIs make it more efficient and cost-effective to track incremental changes on your Amazon EBS volumes through snapshots. This can be done without having to create new volumes from snapshots, and then use Amazon Elastic Compute Cloud (Amazon EC2) instances to compare the differences. You can create incremental snapshots directly from data on-premises into volumes and the cloud to use for quick disaster recovery. With the ability to write and read snapshots, you can write your on-premises data to an snapshot during a disaster. Then after recovery, you can restore it back to Amazon Web Services or on-premises from the snapshot. You no longer need to build and maintain complex mechanisms to copy data to and from Amazon EBS. This API reference provides detailed information about the actions, data types, parameters, and errors of the EBS direct APIs. For more information about the elements that make up the EBS direct APIs, and examples of how to use them effectively, see Accessing the Contents of an Amazon EBS Snapshot in the Amazon Elastic Compute Cloud User Guide. For more information about the supported Amazon Web Services Regions, endpoints, and service quotas for the EBS direct APIs, see Amazon Elastic Block Store Endpoints and Quotas in the Amazon Web Services General Reference.

Amazon Forecast Query Service

Provides APIs for creating and managing Amazon Forecast resources.

AWS Compute Optimizer

Compute Optimizer is a service that analyzes the configuration and utilization metrics of your Amazon Web Services compute resources, such as Amazon EC2 instances, Amazon EC2 Auto Scaling groups, Lambda functions, and Amazon EBS volumes. It reports whether your resources are optimal, and generates optimization recommendations to reduce the cost and improve the performance of your workloads. Compute Optimizer also provides recent utilization metric data, in addition to projected utilization metric data for the recommendations, which you can use to evaluate which recommendation provides the best price-performance trade-off. The analysis of your usage patterns can help you decide when to move or resize your running resources, and still meet your performance and capacity requirements. For more information about Compute Optimizer, including the required permissions to use the service, see the Compute Optimizer User Guide.

AWS Performance Insights

Amazon RDS Performance Insights Amazon RDS Performance Insights enables you to monitor and explore different dimensions of database load based on data captured from a running DB instance. The guide provides detailed information about Performance Insights data types, parameters and errors. When Performance Insights is enabled, the Amazon RDS Performance Insights API provides visibility into the performance of your DB instance. Amazon CloudWatch provides the authoritative source for AWS service-vended monitoring metrics. Performance Insights offers a domain-specific view of DB load. DB load is measured as Average Active Sessions. Performance Insights provides the data to API consumers as a two-dimensional time-series dataset. The time dimension provides DB load data for each time point in the queried time range. Each time point decomposes overall load in relation to the requested dimensions, measured at that time point. Examples include SQL, Wait event, User, and Host. To learn more about Performance Insights and Amazon Aurora DB instances, go to the Amazon Aurora User Guide. To learn more about Performance Insights and Amazon RDS DB instances, go to the Amazon RDS User Guide.

Other APIs in the same category

SqlManagementClient

azure.com
The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.

AWS Certificate Manager Private Certificate Authority

This is the ACM Private CA API Reference. It provides descriptions, syntax, and usage examples for each of the actions and data types involved in creating and managing private certificate authorities (CA) for your organization. The documentation for each action shows the Query API request parameters and the XML response. Alternatively, you can use one of the AWS SDKs to access an API that's tailored to the programming language or platform that you're using. For more information, see AWS SDKs. Each ACM Private CA API operation has a quota that determines the number of times the operation can be called per second. ACM Private CA throttles API requests at different rates depending on the operation. Throttling means that ACM Private CA rejects an otherwise valid request because the request exceeds the operation's quota for the number of requests per second. When a request is throttled, ACM Private CA returns a ThrottlingException error. ACM Private CA does not guarantee a minimum request rate for APIs. To see an up-to-date list of your ACM Private CA quotas, or to request a quota increase, log into your AWS account and visit the Service Quotas console.

Amazon Kinesis Firehose

Amazon Kinesis Data Firehose API Reference Amazon Kinesis Data Firehose is a fully managed service that delivers real-time streaming data to destinations such as Amazon Simple Storage Service (Amazon S3), Amazon Elasticsearch Service (Amazon ES), Amazon Redshift, and Splunk.

Amazon Redshift

Amazon Redshift Overview This is an interface reference for Amazon Redshift. It contains documentation for one of the programming or command line interfaces you can use to manage Amazon Redshift clusters. Note that Amazon Redshift is asynchronous, which means that some interfaces may require techniques, such as polling or asynchronous callback handlers, to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a change is applied immediately, on the next instance reboot, or during the next maintenance window. For a summary of the Amazon Redshift cluster management interfaces, go to Using the Amazon Redshift Management Interfaces. Amazon Redshift manages all the work of setting up, operating, and scaling a data warehouse: provisioning capacity, monitoring and backing up the cluster, and applying patches and upgrades to the Amazon Redshift engine. You can focus on using your data to acquire new insights for your business and customers. If you are a first-time user of Amazon Redshift, we recommend that you begin by reading the Amazon Redshift Getting Started Guide. If you are a database developer, the Amazon Redshift Database Developer Guide explains how to design, build, query, and maintain the databases that make up your data warehouse.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on User entity in Azure API Management deployment. The User entity in API Management represents the developers that call the APIs of the products to which they are subscribed.

Amazon EventBridge

Amazon EventBridge helps you to respond to state changes in your Amazon Web Services resources. When your resources change state, they automatically send events to an event stream. You can create rules that match selected events in the stream and route them to targets to take action. You can also use rules to take action on a predetermined schedule. For example, you can configure rules to: Automatically invoke an Lambda function to update DNS entries when an event notifies you that Amazon EC2 instance enters the running state. Direct specific API records from CloudTrail to an Amazon Kinesis data stream for detailed analysis of potential security or availability risks. Periodically invoke a built-in target to create a snapshot of an Amazon EBS volume. For more information about the features of Amazon EventBridge, see the Amazon EventBridge User Guide.
Amazon MQ is a managed message broker service for Apache ActiveMQ and RabbitMQ that makes it easy to set up and operate message brokers in the cloud. A message broker allows software applications and components to communicate using various programming languages, operating systems, and formal messaging protocols.

Elastic Load Balancing

Elastic Load Balancing A load balancer can distribute incoming traffic across your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered instances and ensures that it routes traffic only to healthy instances. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer and a protocol and port number for connections from the load balancer to the instances. Elastic Load Balancing supports three types of load balancers: Application Load Balancers, Network Load Balancers, and Classic Load Balancers. You can select a load balancer based on your application needs. For more information, see the Elastic Load Balancing User Guide. This reference covers the 2012-06-01 API, which supports Classic Load Balancers. The 2015-12-01 API supports Application Load Balancers and Network Load Balancers. To get started, create a load balancer with one or more listeners using CreateLoadBalancer. Register your instances with the load balancer using RegisterInstancesWithLoadBalancer. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds with a 200 OK response code.

AWS Auto Scaling Plans

AWS Auto Scaling Use AWS Auto Scaling to create scaling plans for your applications to automatically scale your scalable AWS resources. API Summary You can use the AWS Auto Scaling service API to accomplish the following tasks: Create and manage scaling plans Define target tracking scaling policies to dynamically scale your resources based on utilization Scale Amazon EC2 Auto Scaling groups using predictive scaling and dynamic scaling to scale your Amazon EC2 capacity faster Set minimum and maximum capacity limits Retrieve information on existing scaling plans Access current forecast data and historical forecast data for up to 56 days previous To learn more about AWS Auto Scaling, including information about granting IAM users required permissions for AWS Auto Scaling actions, see the AWS Auto Scaling User Guide.

Amazon Simple Storage Service

FabricAdminClient

azure.com
Logical network operation endpoints and objects.

Update Management

azure.com
APIs for managing software update configurations.