Mock sample for your project: Amazon CloudWatch Logs API

Integrate with "Amazon CloudWatch Logs API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon CloudWatch Logs

amazonaws.com

Version: 2014-03-28


Use this API in your project

Start working with "Amazon CloudWatch Logs API" right away by using this ready-to-use mock sample. API mocking can greatly speed up your application development by removing all the tedious tasks or issues: API key provisioning, account creation, unplanned downtime, etc.
It also helps reduce your dependency on third-party APIs and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

You can use Amazon CloudWatch Logs to monitor, store, and access your log files from EC2 instances, CloudTrail, and other sources. You can then retrieve the associated log data from CloudWatch Logs using the CloudWatch console, CloudWatch Logs commands in the Amazon Web Services CLI, CloudWatch Logs API, or CloudWatch Logs SDK. You can use CloudWatch Logs to: Monitor logs from EC2 instances in real-time : You can use CloudWatch Logs to monitor applications and systems using log data. For example, CloudWatch Logs can track the number of errors that occur in your application logs and send you a notification whenever the rate of errors exceeds a threshold that you specify. CloudWatch Logs uses your log data for monitoring so no code changes are required. For example, you can monitor application logs for specific literal terms (such as "NullReferenceException") or count the number of occurrences of a literal term at a particular position in log data (such as "404" status codes in an Apache access log). When the term you are searching for is found, CloudWatch Logs reports the data to a CloudWatch metric that you specify. Monitor CloudTrail logged events : You can create alarms in CloudWatch and receive notifications of particular API activity as captured by CloudTrail. You can use the notification to perform troubleshooting. Archive log data : You can use CloudWatch Logs to store your log data in highly durable storage. You can change the log retention setting so that any log events older than this setting are automatically deleted. The CloudWatch Logs agent makes it easy to quickly send both rotated and non-rotated log data off of a host and into the log service. You can then access the raw log data when you need it.

Other APIs by amazonaws.com

AWS CloudHSM V2

For more information about AWS CloudHSM, see AWS CloudHSM and the AWS CloudHSM User Guide.

Amazon Route 53

Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service.

Application Auto Scaling

With Application Auto Scaling, you can configure automatic scaling for the following resources: Amazon AppStream 2.0 fleets Amazon Aurora Replicas Amazon Comprehend document classification and entity recognizer endpoints Amazon DynamoDB tables and global secondary indexes throughput capacity Amazon ECS services Amazon ElastiCache for Redis clusters (replication groups) Amazon EMR clusters Amazon Keyspaces (for Apache Cassandra) tables Lambda function provisioned concurrency Amazon Managed Streaming for Apache Kafka broker storage Amazon SageMaker endpoint variants Spot Fleet (Amazon EC2) requests Custom resources provided by your own applications or services API Summary The Application Auto Scaling service API includes three key sets of actions: Register and manage scalable targets - Register Amazon Web Services or custom resources as scalable targets (a resource that Application Auto Scaling can scale), set minimum and maximum capacity limits, and retrieve information on existing scalable targets. Configure and manage automatic scaling - Define scaling policies to dynamically scale your resources in response to CloudWatch alarms, schedule one-time or recurring scaling actions, and retrieve your recent scaling activity history. Suspend and resume scaling - Temporarily suspend and later resume automatic scaling by calling the RegisterScalableTarget API action for any Application Auto Scaling scalable target. You can suspend and resume (individually or in combination) scale-out activities that are triggered by a scaling policy, scale-in activities that are triggered by a scaling policy, and scheduled scaling. To learn more about Application Auto Scaling, including information about granting IAM users required permissions for Application Auto Scaling actions, see the Application Auto Scaling User Guide.

Auto Scaling

Amazon EC2 Auto Scaling Amazon EC2 Auto Scaling is designed to automatically launch or terminate EC2 instances based on user-defined scaling policies, scheduled actions, and health checks. For more information about Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling User Guide. For information about granting IAM users required permissions for calls to Amazon EC2 Auto Scaling, see Granting IAM users required permissions for Amazon EC2 Auto Scaling resources in the Amazon EC2 Auto Scaling API Reference.

Amazon EMR Containers

Amazon EMR on EKS provides a deployment option for Amazon EMR that allows you to run open-source big data frameworks on Amazon Elastic Kubernetes Service (Amazon EKS). With this deployment option, you can focus on running analytics workloads while Amazon EMR on EKS builds, configures, and manages containers for open-source applications. For more information about Amazon EMR on EKS concepts and tasks, see What is Amazon EMR on EKS. Amazon EMR containers is the API name for Amazon EMR on EKS. The emr-containers prefix is used in the following scenarios: It is the prefix in the CLI commands for Amazon EMR on EKS. For example, aws emr-containers start-job-run. It is the prefix before IAM policy actions for Amazon EMR on EKS. For example,"Action": [ "emr-containers:StartJobRun"]. For more information, see Policy actions for Amazon EMR on EKS. It is the prefix used in Amazon EMR on EKS service endpoints. For example, emr-containers.us-east-2.amazonaws.com. For more information, see Amazon EMR on EKS Service Endpoints.

AWS Health APIs and Notifications

AWS Health The AWS Health API provides programmatic access to the AWS Health information that appears in the AWS Personal Health Dashboard. You can use the API operations to get information about AWS Health events that affect your AWS services and resources. You must have a Business or Enterprise Support plan from AWS Support to use the AWS Health API. If you call the AWS Health API from an AWS account that doesn't have a Business or Enterprise Support plan, you receive a SubscriptionRequiredException error. You can use the AWS Health endpoint health.us-east-1.amazonaws.com (HTTPS) to call the AWS Health API operations. AWS Health supports a multi-Region application architecture and has two regional endpoints in an active-passive configuration. You can use the high availability endpoint example to determine which AWS Region is active, so that you can get the latest information from the API. For more information, see Accessing the AWS Health API in the AWS Health User Guide. For authentication of requests, AWS Health uses the Signature Version 4 Signing Process. If your AWS account is part of AWS Organizations, you can use the AWS Health organizational view feature. This feature provides a centralized view of AWS Health events across all accounts in your organization. You can aggregate AWS Health events in real time to identify accounts in your organization that are affected by an operational event or get notified of security vulnerabilities. Use the organizational view API operations to enable this feature and return event information. For more information, see Aggregating AWS Health events in the AWS Health User Guide. When you use the AWS Health API operations to return AWS Health events, see the following recommendations: Use the eventScopeCode parameter to specify whether to return AWS Health events that are public or account-specific. Use pagination to view all events from the response. For example, if you call the DescribeEventsForOrganization operation to get all events in your organization, you might receive several page results. Specify the nextToken in the next request to return more results.

AWS Compute Optimizer

Compute Optimizer is a service that analyzes the configuration and utilization metrics of your Amazon Web Services compute resources, such as Amazon EC2 instances, Amazon EC2 Auto Scaling groups, Lambda functions, and Amazon EBS volumes. It reports whether your resources are optimal, and generates optimization recommendations to reduce the cost and improve the performance of your workloads. Compute Optimizer also provides recent utilization metric data, in addition to projected utilization metric data for the recommendations, which you can use to evaluate which recommendation provides the best price-performance trade-off. The analysis of your usage patterns can help you decide when to move or resize your running resources, and still meet your performance and capacity requirements. For more information about Compute Optimizer, including the required permissions to use the service, see the Compute Optimizer User Guide.

Amazon Chime

The Amazon Chime API (application programming interface) is designed for developers to perform key tasks, such as creating and managing Amazon Chime accounts, users, and Voice Connectors. This guide provides detailed information about the Amazon Chime API, including operations, types, inputs and outputs, and error codes. It also includes some server-side API actions to use with the Amazon Chime SDK. For more information about the Amazon Chime SDK, see Using the Amazon Chime SDK in the Amazon Chime Developer Guide. You can use an AWS SDK, the AWS Command Line Interface (AWS CLI), or the REST API to make API calls. We recommend using an AWS SDK or the AWS CLI. Each API operation includes links to information about using it with a language-specific AWS SDK or the AWS CLI. Using an AWS SDK You don't need to write code to calculate a signature for request authentication. The SDK clients authenticate your requests by using access keys that you provide. For more information about AWS SDKs, see the AWS Developer Center. Using the AWS CLI Use your access keys with the AWS CLI to make API calls. For information about setting up the AWS CLI, see Installing the AWS Command Line Interface in the AWS Command Line Interface User Guide. For a list of available Amazon Chime commands, see the Amazon Chime commands in the AWS CLI Command Reference. Using REST APIs If you use REST to make API calls, you must authenticate your request by providing a signature. Amazon Chime supports signature version 4. For more information, see Signature Version 4 Signing Process in the Amazon Web Services General Reference. When making REST API calls, use the service name chime and REST endpoint https://service.chime.aws.amazon.com. Administrative permissions are controlled using AWS Identity and Access Management (IAM). For more information, see Identity and Access Management for Amazon Chime in the Amazon Chime Administration Guide.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud Amazon Elastic Compute Cloud (Amazon EC2) provides secure and resizable computing capacity in the AWS Cloud. Using Amazon EC2 eliminates the need to invest in hardware up front, so you can develop and deploy applications faster. Amazon Virtual Private Cloud (Amazon VPC) enables you to provision a logically isolated section of the AWS Cloud where you can launch AWS resources in a virtual network that you've defined. Amazon Elastic Block Store (Amazon EBS) provides block level storage volumes for use with EC2 instances. EBS volumes are highly available and reliable storage volumes that can be attached to any running instance and used like a hard drive. To learn more, see the following resources: Amazon EC2: AmazonEC2 product page, Amazon EC2 documentation Amazon EBS: Amazon EBS product page, Amazon EBS documentation Amazon VPC: Amazon VPC product page, Amazon VPC documentation AWS VPN: AWS VPN product page, AWS VPN documentation

Amazon Athena

Amazon Athena is an interactive query service that lets you use standard SQL to analyze data directly in Amazon S3. You can point Athena at your data in Amazon S3 and run ad-hoc queries and get results in seconds. Athena is serverless, so there is no infrastructure to set up or manage. You pay only for the queries you run. Athena scales automatically—executing queries in parallel—so results are fast, even with large datasets and complex queries. For more information, see What is Amazon Athena in the Amazon Athena User Guide. If you connect to Athena using the JDBC driver, use version 1.1.0 of the driver or later with the Amazon Athena API. Earlier version drivers do not support the API. For more information and to download the driver, see Accessing Amazon Athena with JDBC. For code samples using the Amazon Web Services SDK for Java, see Examples and Code Samples in the Amazon Athena User Guide.

AWS Single Sign-On Admin

Amazon Web Services Single Sign On (SSO) is a cloud SSO service that makes it easy to centrally manage SSO access to multiple Amazon Web Services accounts and business applications. This guide provides information on SSO operations which could be used for access management of Amazon Web Services accounts. For information about Amazon Web Services SSO features, see the Amazon Web Services Single Sign-On User Guide. Many operations in the SSO APIs rely on identifiers for users and groups, known as principals. For more information about how to work with principals and principal IDs in Amazon Web Services SSO, see the Amazon Web Services SSO Identity Store API Reference.

Other APIs in the same category

ContainerRegistryManagementClient

azure.com

Amazon CloudSearch

Amazon CloudSearch Configuration Service You use the Amazon CloudSearch configuration service to create, configure, and manage search domains. Configuration service requests are submitted using the AWS Query protocol. AWS Query requests are HTTP or HTTPS requests submitted via HTTP GET or POST with a query parameter named Action. The endpoint for configuration service requests is region-specific: cloudsearch. region.amazonaws.com. For example, cloudsearch.us-east-1.amazonaws.com. For a current list of supported regions and endpoints, see Regions and Endpoints.

AWS Greengrass

AWS IoT Greengrass seamlessly extends AWS onto physical devices so they can act locally on the data they generate, while still using the cloud for management, analytics, and durable storage. AWS IoT Greengrass ensures your devices can respond quickly to local events and operate with intermittent connectivity. AWS IoT Greengrass minimizes the cost of transmitting data to the cloud by allowing you to author AWS Lambda functions that execute locally.

AWS Key Management Service

Key Management Service Key Management Service (KMS) is an encryption and key management web service. This guide describes the KMS operations that you can call programmatically. For general information about KMS, see the Key Management Service Developer Guide . KMS is replacing the term customer master key (CMK) with KMS key and KMS key. The concept has not changed. To prevent breaking changes, KMS is keeping some variations of this term. Amazon Web Services provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, macOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to KMS and other Amazon Web Services services. For example, the SDKs take care of tasks such as signing requests (see below), managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools for Amazon Web Services. We recommend that you use the Amazon Web Services SDKs to make programmatic API calls to KMS. Clients must support TLS (Transport Layer Security) 1.0. We recommend TLS 1.2. Clients must also support cipher suites with Perfect Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes. Signing Requests Requests must be signed by using an access key ID and a secret access key. We strongly recommend that you do not use your Amazon Web Services account (root) access key ID and secret key for everyday work with KMS. Instead, use the access key ID and secret access key for an IAM user. You can also use the Amazon Web Services Security Token Service to generate temporary security credentials that you can use to sign requests. All KMS operations require Signature Version 4. Logging API Requests KMS supports CloudTrail, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket that you specify. By using the information collected by CloudTrail, you can determine what requests were made to KMS, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to turn it on and find your log files, see the CloudTrail User Guide. Additional Resources For more information about credentials and request signing, see the following: Amazon Web Services Security Credentials - This topic provides general information about the types of credentials used to access Amazon Web Services. Temporary Security Credentials - This section of the IAM User Guide describes how to create and use temporary security credentials. Signature Version 4 Signing Process - This set of topics walks you through the process of signing a request using an access key ID and a secret access key. Commonly Used API Operations Of the API operations discussed in this guide, the following will prove the most useful for most applications. You will likely perform operations other than these, such as creating keys and assigning policies, by using the console. Encrypt Decrypt GenerateDataKey GenerateDataKeyWithoutPlaintext

AWS Amplify

Amplify enables developers to develop and deploy cloud-powered mobile and web apps. The Amplify Console provides a continuous delivery and hosting service for web applications. For more information, see the Amplify Console User Guide. The Amplify Framework is a comprehensive set of SDKs, libraries, tools, and documentation for client app development. For more information, see the Amplify Framework.

AWS Fault Injection Simulator

AWS Fault Injection Simulator is a managed service that enables you to perform fault injection experiments on your AWS workloads. For more information, see the AWS Fault Injection Simulator User Guide.

AWS Import/Export

AWS Import/Export Service AWS Import/Export accelerates transferring large amounts of data between the AWS cloud and portable storage devices that you mail to us. AWS Import/Export transfers data directly onto and off of your storage devices using Amazon's high-speed internal network and bypassing the Internet. For large data sets, AWS Import/Export is often faster than Internet transfer and more cost effective than upgrading your connectivity.

Amazon Lightsail

Amazon Lightsail is the easiest way to get started with Amazon Web Services (AWS) for developers who need to build websites or web applications. It includes everything you need to launch your project quickly - instances (virtual private servers), container services, storage buckets, managed databases, SSD-based block storage, static IP addresses, load balancers, content delivery network (CDN) distributions, DNS management of registered domains, and resource snapshots (backups) - for a low, predictable monthly price. You can manage your Lightsail resources using the Lightsail console, Lightsail API, AWS Command Line Interface (AWS CLI), or SDKs. For more information about Lightsail concepts and tasks, see the Amazon Lightsail Developer Guide. This API Reference provides detailed information about the actions, data types, parameters, and errors of the Lightsail service. For more information about the supported AWS Regions, endpoints, and service quotas of the Lightsail service, see Amazon Lightsail Endpoints and Quotas in the AWS General Reference.

Platform API

The REST API specification for Ably.

AWS Audit Manager

Welcome to the Audit Manager API reference. This guide is for developers who need detailed information about the Audit Manager API operations, data types, and errors. Audit Manager is a service that provides automated evidence collection so that you can continuously audit your Amazon Web Services usage, and assess the effectiveness of your controls to better manage risk and simplify compliance. Audit Manager provides pre-built frameworks that structure and automate assessments for a given compliance standard. Frameworks include a pre-built collection of controls with descriptions and testing procedures, which are grouped according to the requirements of the specified compliance standard or regulation. You can also customize frameworks and controls to support internal audits with unique requirements. Use the following links to get started with the Audit Manager API: Actions : An alphabetical list of all Audit Manager API operations. Data types : An alphabetical list of all Audit Manager data types. Common parameters : Parameters that all Query operations can use. Common errors : Client and server errors that all operations can return. If you're new to Audit Manager, we recommend that you review the Audit Manager User Guide.

Amazon Managed Blockchain

Amazon Managed Blockchain is a fully managed service for creating and managing blockchain networks using open-source frameworks. Blockchain allows you to build applications where multiple parties can securely and transparently run transactions and share data without the need for a trusted, central authority. Managed Blockchain supports the Hyperledger Fabric and Ethereum open-source frameworks. Because of fundamental differences between the frameworks, some API actions or data types may only apply in the context of one framework and not the other. For example, actions related to Hyperledger Fabric network members such as CreateMember and DeleteMember do not apply to Ethereum. The description for each action indicates the framework or frameworks to which it applies. Data types and properties that apply only in the context of a particular framework are similarly indicated.

Auto Scaling

Amazon EC2 Auto Scaling Amazon EC2 Auto Scaling is designed to automatically launch or terminate EC2 instances based on user-defined scaling policies, scheduled actions, and health checks. For more information about Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling User Guide. For information about granting IAM users required permissions for calls to Amazon EC2 Auto Scaling, see Granting IAM users required permissions for Amazon EC2 Auto Scaling resources in the Amazon EC2 Auto Scaling API Reference.