Mock sample for your project: FinSpace Public API

Integrate with "FinSpace Public API" from amazonaws.com in no time with Mockoon's ready to use mock sample

FinSpace Public API

amazonaws.com

Version: 2020-07-13


Use this API in your project

Start working with "FinSpace Public API" right away by using this ready-to-use mock sample. API mocking can greatly speed up your application development by removing all the tedious tasks or issues: API key provisioning, account creation, unplanned downtime, etc.
It also helps reduce your dependency on third-party APIs and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

The FinSpace APIs let you take actions inside the FinSpace environment.

Other APIs by amazonaws.com

Amazon Lookout for Equipment

Amazon Lookout for Equipment is a machine learning service that uses advanced analytics to identify anomalies in machines from sensor data for use in predictive maintenance.

Amazon Personalize Events

Amazon Personalize can consume real-time user event data, such as stream or click data, and use it for model training either alone or combined with historical data. For more information see Recording Events.

AWS Elemental MediaLive

API for AWS Elemental MediaLive

AWS Network Firewall

This is the API Reference for AWS Network Firewall. This guide is for developers who need detailed information about the Network Firewall API actions, data types, and errors. The REST API requires you to handle connection details, such as calculating signatures, handling request retries, and error handling. For general information about using the AWS REST APIs, see AWS APIs. To access Network Firewall using the REST API endpoint: https://network-firewall..amazonaws.com Alternatively, you can use one of the AWS SDKs to access an API that's tailored to the programming language or platform that you're using. For more information, see AWS SDKs. For descriptions of Network Firewall features, including and step-by-step instructions on how to use them through the Network Firewall console, see the Network Firewall Developer Guide. Network Firewall is a stateful, managed, network firewall and intrusion detection and prevention service for Amazon Virtual Private Cloud (Amazon VPC). With Network Firewall, you can filter traffic at the perimeter of your VPC. This includes filtering traffic going to and coming from an internet gateway, NAT gateway, or over VPN or AWS Direct Connect. Network Firewall uses rules that are compatible with Suricata, a free, open source intrusion detection system (IDS) engine. For information about Suricata, see the Suricata website. You can use Network Firewall to monitor and protect your VPC traffic in a number of ways. The following are just a few examples: Allow domains or IP addresses for known AWS service endpoints, such as Amazon S3, and block all other forms of traffic. Use custom lists of known bad domains to limit the types of domain names that your applications can access. Perform deep packet inspection on traffic entering or leaving your VPC. Use stateful protocol detection to filter protocols like HTTPS, regardless of the port used. To enable Network Firewall for your VPCs, you perform steps in both Amazon VPC and in Network Firewall. For information about using Amazon VPC, see Amazon VPC User Guide. To start using Network Firewall, do the following: (Optional) If you don't already have a VPC that you want to protect, create it in Amazon VPC. In Amazon VPC, in each Availability Zone where you want to have a firewall endpoint, create a subnet for the sole use of Network Firewall. In Network Firewall, create stateless and stateful rule groups, to define the components of the network traffic filtering behavior that you want your firewall to have. In Network Firewall, create a firewall policy that uses your rule groups and specifies additional default traffic filtering behavior. In Network Firewall, create a firewall and specify your new firewall policy and VPC subnets. Network Firewall creates a firewall endpoint in each subnet that you specify, with the behavior that's defined in the firewall policy. In Amazon VPC, use ingress routing enhancements to route traffic through the new firewall endpoints.

Amazon Mobile Analytics

Amazon Mobile Analytics is a service for collecting, visualizing, and understanding app usage data at scale.

Amazon CloudWatch Logs

You can use Amazon CloudWatch Logs to monitor, store, and access your log files from EC2 instances, CloudTrail, and other sources. You can then retrieve the associated log data from CloudWatch Logs using the CloudWatch console, CloudWatch Logs commands in the Amazon Web Services CLI, CloudWatch Logs API, or CloudWatch Logs SDK. You can use CloudWatch Logs to: Monitor logs from EC2 instances in real-time : You can use CloudWatch Logs to monitor applications and systems using log data. For example, CloudWatch Logs can track the number of errors that occur in your application logs and send you a notification whenever the rate of errors exceeds a threshold that you specify. CloudWatch Logs uses your log data for monitoring so no code changes are required. For example, you can monitor application logs for specific literal terms (such as "NullReferenceException") or count the number of occurrences of a literal term at a particular position in log data (such as "404" status codes in an Apache access log). When the term you are searching for is found, CloudWatch Logs reports the data to a CloudWatch metric that you specify. Monitor CloudTrail logged events : You can create alarms in CloudWatch and receive notifications of particular API activity as captured by CloudTrail. You can use the notification to perform troubleshooting. Archive log data : You can use CloudWatch Logs to store your log data in highly durable storage. You can change the log retention setting so that any log events older than this setting are automatically deleted. The CloudWatch Logs agent makes it easy to quickly send both rotated and non-rotated log data off of a host and into the log service. You can then access the raw log data when you need it.

AWS Transfer Family

Amazon Web Services Transfer Family is a fully managed service that enables the transfer of files over the File Transfer Protocol (FTP), File Transfer Protocol over SSL (FTPS), or Secure Shell (SSH) File Transfer Protocol (SFTP) directly into and out of Amazon Simple Storage Service (Amazon S3). Amazon Web Services helps you seamlessly migrate your file transfer workflows to Amazon Web Services Transfer Family by integrating with existing authentication systems, and providing DNS routing with Amazon Route 53 so nothing changes for your customers and partners, or their applications. With your data in Amazon S3, you can use it with Amazon Web Services services for processing, analytics, machine learning, and archiving. Getting started with Amazon Web Services Transfer Family is easy since there is no infrastructure to buy and set up.

AWS Resource Access Manager

This is the Resource Access Manager API Reference. This documentation provides descriptions and syntax for each of the actions and data types in RAM. RAM is a service that helps you securely share your Amazon Web Services resources across Amazon Web Services accounts and within your organization or organizational units (OUs) in Organizations. For supported resource types, you can also share resources with IAM roles and IAM users. If you have multiple Amazon Web Services accounts, you can use RAM to share those resources with other accounts. To learn more about RAM, see the following resources: Resource Access Manager product page Resource Access Manager User Guide

AWS SSO OIDC

AWS Single Sign-On (SSO) OpenID Connect (OIDC) is a web service that enables a client (such as AWS CLI or a native application) to register with AWS SSO. The service also enables the client to fetch the user’s access token upon successful authentication and authorization with AWS SSO. This service conforms with the OAuth 2.0 based implementation of the device authorization grant standard ( https://tools.ietf.org/html/rfc8628). For general information about AWS SSO, see What is AWS Single Sign-On? in the AWS SSO User Guide. This API reference guide describes the AWS SSO OIDC operations that you can call programatically and includes detailed information on data types and errors. AWS provides SDKs that consist of libraries and sample code for various programming languages and platforms such as Java, Ruby, .Net, iOS, and Android. The SDKs provide a convenient way to create programmatic access to AWS SSO and other AWS services. For more information about the AWS SDKs, including how to download and install them, see Tools for Amazon Web Services.

Amazon Machine Learning

Definition of the public APIs exposed by Amazon Machine Learning

Amazon Prometheus Service

Amazon Managed Service for Prometheus

Amazon Comprehend

Amazon Comprehend is an AWS service for gaining insight into the content of documents. Use these actions to determine the topics contained in your documents, the topics they discuss, the predominant sentiment expressed in them, the predominant language used, and more.

Other APIs in the same category

Amazon Elasticsearch Service

Amazon Elasticsearch Configuration Service Use the Amazon Elasticsearch Configuration API to create, configure, and manage Elasticsearch domains. For sample code that uses the Configuration API, see the Amazon Elasticsearch Service Developer Guide. The guide also contains sample code for sending signed HTTP requests to the Elasticsearch APIs. The endpoint for configuration service requests is region-specific: es. region.amazonaws.com. For example, es.us-east-1.amazonaws.com. For a current list of supported regions and endpoints, see Regions and Endpoints.

Amazon Import/Export Snowball

AWS Snow Family is a petabyte-scale data transport solution that uses secure devices to transfer large amounts of data between your on-premises data centers and Amazon Simple Storage Service (Amazon S3). The Snow commands described here provide access to the same functionality that is available in the AWS Snow Family Management Console, which enables you to create and manage jobs for a Snow device. To transfer data locally with a Snow device, you'll need to use the Snowball Edge client or the Amazon S3 API Interface for Snowball or AWS OpsHub for Snow Family. For more information, see the User Guide.

Amazon Route 53

Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service.

SubscriptionClient

azure.com
The User Subscription Management Client.

SearchServiceClient

azure.com
Client that can be used to manage and query indexes and documents, as well as manage other resources, on a search service.

DnsManagementClient

azure.com
The DNS Management Client.

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

ContainerServiceClient

azure.com
The Container Service Client.

MariaDBManagementClient

azure.com
The Microsoft Azure management API provides create, read, update, and delete functionality for Azure MariaDB resources including servers, databases, firewall rules, VNET rules, log files and configurations with new business model.

LUIS Authoring Client

azure.com

ContainerServiceClient

azure.com
The Container Service Client.

MariaDBManagementClient

azure.com
The Microsoft Azure management API provides create, read, update, and delete functionality for Azure MariaDB resources including servers, databases, firewall rules, VNET rules, security alert policies, log files, encryption keys, active directory administrator and configurations.