Mock sample for your project: Amazon EC2 Container Registry API

Integrate with "Amazon EC2 Container Registry API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon EC2 Container Registry

amazonaws.com

Version: 2015-09-21


Use this API in your project

Speed up your application development by using "Amazon EC2 Container Registry API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
It also improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Amazon Elastic Container Registry Amazon Elastic Container Registry (Amazon ECR) is a managed container image registry service. Customers can use the familiar Docker CLI, or their preferred client, to push, pull, and manage images. Amazon ECR provides a secure, scalable, and reliable registry for your Docker or Open Container Initiative (OCI) images. Amazon ECR supports private repositories with resource-based permissions using IAM so that specific users or Amazon EC2 instances can access repositories and images. Amazon ECR has service endpoints in each supported Region. For more information, see Amazon ECR endpoints in the Amazon Web Services General Reference.

Other APIs by amazonaws.com

Amazon Kinesis Video Streams Media

Amazon Kinesis Video Streams Archived Media

AWS Elemental MediaConvert

AWS Elemental MediaConvert

Amazon Timestream Write

Amazon Timestream is a fast, scalable, fully managed time series database service that makes it easy to store and analyze trillions of time series data points per day. With Timestream, you can easily store and analyze IoT sensor data to derive insights from your IoT applications. You can analyze industrial telemetry to streamline equipment management and maintenance. You can also store and analyze log data and metrics to improve the performance and availability of your applications. Timestream is built from the ground up to effectively ingest, process, and store time series data. It organizes data to optimize query processing. It automatically scales based on the volume of data ingested and on the query volume to ensure you receive optimal performance while inserting and querying data. As your data grows over time, Timestream’s adaptive query processing engine spans across storage tiers to provide fast analysis while reducing costs.

AWS Marketplace Catalog Service

Catalog API actions allow you to manage your entities through list, describe, and update capabilities. An entity can be a product or an offer on AWS Marketplace. You can automate your entity update process by integrating the AWS Marketplace Catalog API with your AWS Marketplace product build or deployment pipelines. You can also create your own applications on top of the Catalog API to manage your products on AWS Marketplace.

AWS Elemental MediaPackage

AWS Elemental MediaPackage

Amazon Kinesis Video Signaling Channels

Kinesis Video Streams Signaling Service is a intermediate service that establishes a communication channel for discovering peers, transmitting offers and answers in order to establish peer-to-peer connection in webRTC technology.

AWS Step Functions

AWS Step Functions AWS Step Functions is a service that lets you coordinate the components of distributed applications and microservices using visual workflows. You can use Step Functions to build applications from individual components, each of which performs a discrete function, or task, allowing you to scale and change applications quickly. Step Functions provides a console that helps visualize the components of your application as a series of steps. Step Functions automatically triggers and tracks each step, and retries steps when there are errors, so your application executes predictably and in the right order every time. Step Functions logs the state of each step, so you can quickly diagnose and debug any issues. Step Functions manages operations and underlying infrastructure to ensure your application is available at any scale. You can run tasks on AWS, your own servers, or any system that has access to AWS. You can access and use Step Functions using the console, the AWS SDKs, or an HTTP API. For more information about Step Functions, see the AWS Step Functions Developer Guide .

AWS Key Management Service

Key Management Service Key Management Service (KMS) is an encryption and key management web service. This guide describes the KMS operations that you can call programmatically. For general information about KMS, see the Key Management Service Developer Guide . KMS is replacing the term customer master key (CMK) with KMS key and KMS key. The concept has not changed. To prevent breaking changes, KMS is keeping some variations of this term. Amazon Web Services provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, macOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to KMS and other Amazon Web Services services. For example, the SDKs take care of tasks such as signing requests (see below), managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools for Amazon Web Services. We recommend that you use the Amazon Web Services SDKs to make programmatic API calls to KMS. Clients must support TLS (Transport Layer Security) 1.0. We recommend TLS 1.2. Clients must also support cipher suites with Perfect Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes. Signing Requests Requests must be signed by using an access key ID and a secret access key. We strongly recommend that you do not use your Amazon Web Services account (root) access key ID and secret key for everyday work with KMS. Instead, use the access key ID and secret access key for an IAM user. You can also use the Amazon Web Services Security Token Service to generate temporary security credentials that you can use to sign requests. All KMS operations require Signature Version 4. Logging API Requests KMS supports CloudTrail, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket that you specify. By using the information collected by CloudTrail, you can determine what requests were made to KMS, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to turn it on and find your log files, see the CloudTrail User Guide. Additional Resources For more information about credentials and request signing, see the following: Amazon Web Services Security Credentials - This topic provides general information about the types of credentials used to access Amazon Web Services. Temporary Security Credentials - This section of the IAM User Guide describes how to create and use temporary security credentials. Signature Version 4 Signing Process - This set of topics walks you through the process of signing a request using an access key ID and a secret access key. Commonly Used API Operations Of the API operations discussed in this guide, the following will prove the most useful for most applications. You will likely perform operations other than these, such as creating keys and assigning policies, by using the console. Encrypt Decrypt GenerateDataKey GenerateDataKeyWithoutPlaintext

AWS Security Token Service

Security Token Service Security Token Service (STS) enables you to request temporary, limited-privilege credentials for Identity and Access Management (IAM) users or for users that you authenticate (federated users). This guide provides descriptions of the STS API. For more information about using this service, see Temporary Security Credentials.

Amazon Macie 2

Amazon Macie is a fully managed data security and data privacy service that uses machine learning and pattern matching to discover and protect your sensitive data in AWS. Macie automates the discovery of sensitive data, such as PII and intellectual property, to provide you with insight into the data that your organization stores in AWS. Macie also provides an inventory of your Amazon S3 buckets, which it continually monitors for you. If Macie detects sensitive data or potential data access issues, it generates detailed findings for you to review and act upon as necessary.

AWS MediaTailor

Use the AWS Elemental MediaTailor SDKs and CLI to configure scalable ad insertion and linear channels. With MediaTailor, you can assemble existing content into a linear stream and serve targeted ads to viewers while maintaining broadcast quality in over-the-top (OTT) video applications. For information about using the service, including detailed information about the settings covered in this guide, see the AWS Elemental MediaTailor User Guide. Through the SDKs and the CLI you manage AWS Elemental MediaTailor configurations and channels the same as you do through the console. For example, you specify ad insertion behavior and mapping information for the origin server and the ad decision server (ADS).

Other APIs in the same category

NetworkExperiments

azure.com
These are the Network Experiment APIs.

Relay

azure.com
Use these API to manage Azure Relay resources through Azure Resource Manager.

Microsoft NetApp

azure.com
Microsoft NetApp Azure Resource Provider specification

MediaServicesManagementClient

azure.com
Media Services resource management APIs.

Computer Vision

azure.com
The Computer Vision API provides state-of-the-art algorithms to process images and return information. For example, it can be used to determine if an image contains mature content, or it can be used to find all the faces in an image. It also has other features like estimating dominant and accent colors, categorizing the content of images, and describing an image with complete English sentences. Additionally, it can also intelligently generate images thumbnails for displaying large images effectively.

CustomerInsightsManagementClient

azure.com
The Azure Customer Insights management API provides a RESTful set of web services that interact with Azure Customer Insights service to manage your resources. The API has entities that capture the relationship between an end user and the Azure Customer Insights service.

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

PostgreSQLManagementClient

azure.com
The Microsoft Azure management API provides create, read, update, and delete functionality for Azure PostgreSQL resources including servers, databases, firewall rules, VNET rules, security alert policies, log files, encryption keys, active directory administrator and configurations.

Ink Recognizer Client

azure.com
The service is used to perform ink layout and recognition of written words and shapes. Ink strokes passed to the service are recognized and organized into recognition results in the response

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

Mixed Reality

azure.com
Mixed Reality Resource Provider REST API

Anomaly Detector Client

azure.com
The Anomaly Detector API detects anomalies automatically in time series data. It supports two kinds of mode, one is for stateless using, another is for stateful using. In stateless mode, there are three functionalities. Entire Detect is for detecting the whole series with model trained by the time series, Last Detect is detecting last point with model trained by points before. ChangePoint Detect is for detecting trend changes in time series. In stateful mode, user can store time series, the stored time series will be used for detection anomalies. Under this mode, user can still use the above three functionalities by only giving a time range without preparing time series in client side. Besides the above three functionalities, stateful model also provide group based detection and labeling service. By leveraging labeling service user can provide labels for each detection result, these labels will be used for retuning or regenerating detection models. Inconsistency detection is a kind of group based detection, this detection will find inconsistency ones in a set of time series. By using anomaly detector service, business customers can discover incidents and establish a logic flow for root cause analysis.