Mock sample for your project: Amazon CloudFront API

Integrate with "Amazon CloudFront API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon CloudFront

amazonaws.com

Version: 2020-05-31


Use this API in your project

Start working with "Amazon CloudFront API" right away by using this ready-to-use mock sample. API mocking can greatly speed up your application development by removing all the tedious tasks or issues: API key provisioning, account creation, unplanned downtime, etc.
It also helps reduce your dependency on third-party APIs and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Amazon CloudFront This is the Amazon CloudFront API Reference. This guide is for developers who need detailed information about CloudFront API actions, data types, and errors. For detailed information about CloudFront features, see the Amazon CloudFront Developer Guide.

Other APIs by amazonaws.com

Amazon Elastic Kubernetes Service

Amazon Elastic Kubernetes Service (Amazon EKS) is a managed service that makes it easy for you to run Kubernetes on Amazon Web Services without needing to stand up or maintain your own Kubernetes control plane. Kubernetes is an open-source system for automating the deployment, scaling, and management of containerized applications. Amazon EKS runs up-to-date versions of the open-source Kubernetes software, so you can use all the existing plugins and tooling from the Kubernetes community. Applications running on Amazon EKS are fully compatible with applications running on any standard Kubernetes environment, whether running in on-premises data centers or public clouds. This means that you can easily migrate any standard Kubernetes application to Amazon EKS without any code modification required.

AmazonApiGatewayManagementApi

The Amazon API Gateway Management API allows you to directly manage runtime aspects of your deployed APIs. To use it, you must explicitly set the SDK's endpoint to point to the endpoint of your deployed API. The endpoint will be of the form https://{api-id}.execute-api.{region}.amazonaws.com/{stage}, or will be the endpoint corresponding to your API's custom domain and base path, if applicable.

Amazon AppConfig

AWS AppConfig Use AWS AppConfig, a capability of AWS Systems Manager, to create, manage, and quickly deploy application configurations. AppConfig supports controlled deployments to applications of any size and includes built-in validation checks and monitoring. You can use AppConfig with applications hosted on Amazon EC2 instances, AWS Lambda, containers, mobile applications, or IoT devices. To prevent errors when deploying application configurations, especially for production systems where a simple typo could cause an unexpected outage, AppConfig includes validators. A validator provides a syntactic or semantic check to ensure that the configuration you want to deploy works as intended. To validate your application configuration data, you provide a schema or a Lambda function that runs against the configuration. The configuration deployment or update can only proceed when the configuration data is valid. During a configuration deployment, AppConfig monitors the application to ensure that the deployment is successful. If the system encounters an error, AppConfig rolls back the change to minimize impact for your application users. You can configure a deployment strategy for each application or environment that includes deployment criteria, including velocity, bake time, and alarms to monitor. Similar to error monitoring, if a deployment triggers an alarm, AppConfig automatically rolls back to the previous version. AppConfig supports multiple use cases. Here are some examples. Application tuning : Use AppConfig to carefully introduce changes to your application that can only be tested with production traffic. Feature toggle : Use AppConfig to turn on new features that require a timely deployment, such as a product launch or announcement. Allow list : Use AppConfig to allow premium subscribers to access paid content. Operational issues : Use AppConfig to reduce stress on your application when a dependency or other external factor impacts the system. This reference is intended to be used with the AWS AppConfig User Guide.

Amazon Route 53

Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service.

Amazon DynamoDB

Amazon DynamoDB Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with seamless scalability. DynamoDB lets you offload the administrative burdens of operating and scaling a distributed database, so that you don't have to worry about hardware provisioning, setup and configuration, replication, software patching, or cluster scaling. With DynamoDB, you can create database tables that can store and retrieve any amount of data, and serve any level of request traffic. You can scale up or scale down your tables' throughput capacity without downtime or performance degradation, and use the AWS Management Console to monitor resource utilization and performance metrics. DynamoDB automatically spreads the data and traffic for your tables over a sufficient number of servers to handle your throughput and storage requirements, while maintaining consistent and fast performance. All of your data is stored on solid state disks (SSDs) and automatically replicated across multiple Availability Zones in an AWS region, providing built-in high availability and data durability.

Amazon Connect Customer Profiles

Amazon Connect Customer Profiles Welcome to the Amazon Connect Customer Profiles API Reference. This guide provides information about the Amazon Connect Customer Profiles API, including supported operations, data types, parameters, and schemas. Amazon Connect Customer Profiles is a unified customer profile for your contact center that has pre-built connectors powered by AppFlow that make it easy to combine customer information from third party applications, such as Salesforce (CRM), ServiceNow (ITSM), and your enterprise resource planning (ERP), with contact history from your Amazon Connect contact center. If you're new to Amazon Connect , you might find it helpful to also review the Amazon Connect Administrator Guide.

Amazon Connect Contact Lens

Contact Lens for Amazon Connect enables you to analyze conversations between customer and agents, by using speech transcription, natural language processing, and intelligent search capabilities. It performs sentiment analysis, detects issues, and enables you to automatically categorize contacts. Contact Lens for Amazon Connect provides both real-time and post-call analytics of customer-agent conversations. For more information, see Analyze conversations using Contact Lens in the Amazon Connect Administrator Guide.

AWS Storage Gateway

Storage Gateway Service Storage Gateway is the service that connects an on-premises software appliance with cloud-based storage to provide seamless and secure integration between an organization's on-premises IT environment and the Amazon Web Services storage infrastructure. The service enables you to securely upload data to the Cloud for cost effective backup and rapid disaster recovery. Use the following links to get started using the Storage Gateway Service API Reference : Storage Gateway required request headers : Describes the required headers that you must send with every POST request to Storage Gateway. Signing requests : Storage Gateway requires that you authenticate every request you send; this topic describes how sign such a request. Error responses : Provides reference information about Storage Gateway errors. Operations in Storage Gateway : Contains detailed descriptions of all Storage Gateway operations, their request parameters, response elements, possible errors, and examples of requests and responses. Storage Gateway endpoints and quotas : Provides a list of each Region and the endpoints available for use with Storage Gateway. Storage Gateway resource IDs are in uppercase. When you use these resource IDs with the Amazon EC2 API, EC2 expects resource IDs in lowercase. You must change your resource ID to lowercase to use it with the EC2 API. For example, in Storage Gateway the ID for a volume might be vol-AA22BB012345DAF670. When you use this ID with the EC2 API, you must change it to vol-aa22bb012345daf670. Otherwise, the EC2 API might not behave as expected. IDs for Storage Gateway volumes and Amazon EBS snapshots created from gateway volumes are changing to a longer format. Starting in December 2016, all new volumes and snapshots will be created with a 17-character string. Starting in April 2016, you will be able to use these longer IDs so you can test your systems with the new format. For more information, see Longer EC2 and EBS resource IDs. For example, a volume Amazon Resource Name (ARN) with the longer volume ID format looks like the following: arn:aws:storagegateway:us-west-2:111122223333:gateway/sgw-12A3456B/volume/vol-1122AABBCCDDEEFFG. A snapshot ID with the longer ID format looks like the following: snap-78e226633445566ee. For more information, see Announcement: Heads-up – Longer Storage Gateway volume and snapshot IDs coming in 2016.

AWS Ground Station

Welcome to the AWS Ground Station API Reference. AWS Ground Station is a fully managed service that enables you to control satellite communications, downlink and process satellite data, and scale your satellite operations efficiently and cost-effectively without having to build or manage your own ground station infrastructure.

AWS Well-Architected Tool

AWS Well-Architected Tool This is the AWS Well-Architected Tool API Reference. The AWS Well-Architected Tool API provides programmatic access to the AWS Well-Architected Tool in the AWS Management Console. For information about the AWS Well-Architected Tool, see the AWS Well-Architected Tool User Guide.

Amazon FSx

Amazon FSx is a fully managed service that makes it easy for storage and application administrators to launch and use shared file storage.

AWS CloudTrail

CloudTrail This is the CloudTrail API Reference. It provides descriptions of actions, data types, common parameters, and common errors for CloudTrail. CloudTrail is a web service that records Amazon Web Services API calls for your Amazon Web Services account and delivers log files to an Amazon S3 bucket. The recorded information includes the identity of the user, the start time of the Amazon Web Services API call, the source IP address, the request parameters, and the response elements returned by the service. As an alternative to the API, you can use one of the Amazon Web Services SDKs, which consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .NET, iOS, Android, etc.). The SDKs provide programmatic access to CloudTrail. For example, the SDKs handle cryptographically signing requests, managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools to Build on Amazon Web Services. See the CloudTrail User Guide for information about the data that is included with each Amazon Web Services API call listed in the log files.

Other APIs in the same category

AmazonMWAA

Amazon Managed Workflows for Apache Airflow This section contains the Amazon Managed Workflows for Apache Airflow (MWAA) API reference documentation. For more information, see What Is Amazon MWAA?.

FabricAdminClient

azure.com
Logical network operation endpoints and objects.

Amazon Glacier

Amazon S3 Glacier (Glacier) is a storage solution for "cold data." Glacier is an extremely low-cost storage service that provides secure, durable, and easy-to-use storage for data backup and archival. With Glacier, customers can store their data cost effectively for months, years, or decades. Glacier also enables customers to offload the administrative burdens of operating and scaling storage to AWS, so they don't have to worry about capacity planning, hardware provisioning, data replication, hardware failure and recovery, or time-consuming hardware migrations. Glacier is a great storage choice when low storage cost is paramount and your data is rarely retrieved. If your application requires fast or frequent access to your data, consider using Amazon S3. For more information, see Amazon Simple Storage Service (Amazon S3). You can store any kind of data in any format. There is no maximum limit on the total amount of data you can store in Glacier. If you are a first-time user of Glacier, we recommend that you begin by reading the following sections in the Amazon S3 Glacier Developer Guide : What is Amazon S3 Glacier - This section of the Developer Guide describes the underlying data model, the operations it supports, and the AWS SDKs that you can use to interact with the service. Getting Started with Amazon S3 Glacier - The Getting Started section walks you through the process of creating a vault, uploading archives, creating jobs to download archives, retrieving the job output, and deleting archives.

Amazon Machine Learning

Definition of the public APIs exposed by Amazon Machine Learning

AWS Key Management Service

Key Management Service Key Management Service (KMS) is an encryption and key management web service. This guide describes the KMS operations that you can call programmatically. For general information about KMS, see the Key Management Service Developer Guide . KMS is replacing the term customer master key (CMK) with KMS key and KMS key. The concept has not changed. To prevent breaking changes, KMS is keeping some variations of this term. Amazon Web Services provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, macOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to KMS and other Amazon Web Services services. For example, the SDKs take care of tasks such as signing requests (see below), managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools for Amazon Web Services. We recommend that you use the Amazon Web Services SDKs to make programmatic API calls to KMS. Clients must support TLS (Transport Layer Security) 1.0. We recommend TLS 1.2. Clients must also support cipher suites with Perfect Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes. Signing Requests Requests must be signed by using an access key ID and a secret access key. We strongly recommend that you do not use your Amazon Web Services account (root) access key ID and secret key for everyday work with KMS. Instead, use the access key ID and secret access key for an IAM user. You can also use the Amazon Web Services Security Token Service to generate temporary security credentials that you can use to sign requests. All KMS operations require Signature Version 4. Logging API Requests KMS supports CloudTrail, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket that you specify. By using the information collected by CloudTrail, you can determine what requests were made to KMS, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to turn it on and find your log files, see the CloudTrail User Guide. Additional Resources For more information about credentials and request signing, see the following: Amazon Web Services Security Credentials - This topic provides general information about the types of credentials used to access Amazon Web Services. Temporary Security Credentials - This section of the IAM User Guide describes how to create and use temporary security credentials. Signature Version 4 Signing Process - This set of topics walks you through the process of signing a request using an access key ID and a secret access key. Commonly Used API Operations Of the API operations discussed in this guide, the following will prove the most useful for most applications. You will likely perform operations other than these, such as creating keys and assigning policies, by using the console. Encrypt Decrypt GenerateDataKey GenerateDataKeyWithoutPlaintext

AWSServerlessApplicationRepository

The AWS Serverless Application Repository makes it easy for developers and enterprises to quickly find
and deploy serverless applications in the AWS Cloud. For more information about serverless applications,
see Serverless Computing and Applications on the AWS website. The AWS Serverless Application Repository is deeply integrated with the AWS Lambda console, so that developers of
all levels can get started with serverless computing without needing to learn anything new. You can use category
keywords to browse for applications such as web and mobile backends, data processing applications, or chatbots.
You can also search for applications by name, publisher, or event source. To use an application, you simply choose it,
configure any required fields, and deploy it with a few clicks. You can also easily publish applications, sharing them publicly with the community at large, or privately
within your team or across your organization. To publish a serverless application (or app), you can use the
AWS Management Console, AWS Command Line Interface (AWS CLI), or AWS SDKs to upload the code. Along with the
code, you upload a simple manifest file, also known as the AWS Serverless Application Model (AWS SAM) template.
For more information about AWS SAM, see AWS Serverless Application Model (AWS SAM) on the AWS Labs
GitHub repository. The AWS Serverless Application Repository Developer Guide contains more information about the two developer
experiences available:
Consuming Applications – Browse for applications and view information about them, including
source code and readme files. Also install, configure, and deploy applications of your choosing.
Publishing Applications – Configure and upload applications to make them available to other
developers, and publish new versions of applications.

Amazon Pinpoint Email Service

Amazon Pinpoint Email Service Welcome to the Amazon Pinpoint Email API Reference. This guide provides information about the Amazon Pinpoint Email API (version 1.0), including supported operations, data types, parameters, and schemas. Amazon Pinpoint is an AWS service that you can use to engage with your customers across multiple messaging channels. You can use Amazon Pinpoint to send email, SMS text messages, voice messages, and push notifications. The Amazon Pinpoint Email API provides programmatic access to options that are unique to the email channel and supplement the options provided by the Amazon Pinpoint API. If you're new to Amazon Pinpoint, you might find it helpful to also review the Amazon Pinpoint Developer Guide. The Amazon Pinpoint Developer Guide provides tutorials, code samples, and procedures that demonstrate how to use Amazon Pinpoint features programmatically and how to integrate Amazon Pinpoint functionality into mobile apps and other types of applications. The guide also provides information about key topics such as Amazon Pinpoint integration with other AWS services and the limits that apply to using the service. The Amazon Pinpoint Email API is available in several AWS Regions and it provides an endpoint for each of these Regions. For a list of all the Regions and endpoints where the API is currently available, see AWS Service Endpoints in the Amazon Web Services General Reference. To learn more about AWS Regions, see Managing AWS Regions in the Amazon Web Services General Reference. In each Region, AWS maintains multiple Availability Zones. These Availability Zones are physically isolated from each other, but are united by private, low-latency, high-throughput, and highly redundant network connections. These Availability Zones enable us to provide very high levels of availability and redundancy, while also minimizing latency. To learn more about the number of Availability Zones that are available in each Region, see AWS Global Infrastructure.

KeyVaultManagementClient

azure.com
The Admin KeyVault Management Client.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Email Templates associated with your Azure API Management deployment.

AWS Identity and Access Management

Identity and Access Management Identity and Access Management (IAM) is a web service for securely controlling access to Amazon Web Services services. With IAM, you can centrally manage users, security credentials such as access keys, and permissions that control which Amazon Web Services resources users and applications can access. For more information about IAM, see Identity and Access Management (IAM) and the Identity and Access Management User Guide.

RecoveryServicesBackupClient

azure.com

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.