Mock sample for your project: Amazon Chime SDK Messaging API

Integrate with "Amazon Chime SDK Messaging API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Chime SDK Messaging

amazonaws.com

Version: 2021-05-15


Use this API in your project

Speed up your application development by using "Amazon Chime SDK Messaging API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and allow you to stop relying on an external API to get the job done. No more API keys to provision, accesses to configure or unplanned downtime, just work.
Enhance your development infrastructure by mocking third party APIs during integrating testing.

Description

The Amazon Chime SDK Messaging APIs in this section allow software developers to send and receive messages in custom messaging applications. These APIs depend on the frameworks provided by the Amazon Chime SDK Identity APIs. For more information about the messaging APIs, see Amazon Chime SDK messaging

Other APIs by amazonaws.com

AWS RoboMaker

This section provides documentation for the AWS RoboMaker API operations.

Amazon Route 53

Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service.

AWS SSO OIDC

AWS Single Sign-On (SSO) OpenID Connect (OIDC) is a web service that enables a client (such as AWS CLI or a native application) to register with AWS SSO. The service also enables the client to fetch the user’s access token upon successful authentication and authorization with AWS SSO. This service conforms with the OAuth 2.0 based implementation of the device authorization grant standard ( https://tools.ietf.org/html/rfc8628). For general information about AWS SSO, see What is AWS Single Sign-On? in the AWS SSO User Guide. This API reference guide describes the AWS SSO OIDC operations that you can call programatically and includes detailed information on data types and errors. AWS provides SDKs that consist of libraries and sample code for various programming languages and platforms such as Java, Ruby, .Net, iOS, and Android. The SDKs provide a convenient way to create programmatic access to AWS SSO and other AWS services. For more information about the AWS SDKs, including how to download and install them, see Tools for Amazon Web Services.

AWS Step Functions

AWS Step Functions AWS Step Functions is a service that lets you coordinate the components of distributed applications and microservices using visual workflows. You can use Step Functions to build applications from individual components, each of which performs a discrete function, or task, allowing you to scale and change applications quickly. Step Functions provides a console that helps visualize the components of your application as a series of steps. Step Functions automatically triggers and tracks each step, and retries steps when there are errors, so your application executes predictably and in the right order every time. Step Functions logs the state of each step, so you can quickly diagnose and debug any issues. Step Functions manages operations and underlying infrastructure to ensure your application is available at any scale. You can run tasks on AWS, your own servers, or any system that has access to AWS. You can access and use Step Functions using the console, the AWS SDKs, or an HTTP API. For more information about Step Functions, see the AWS Step Functions Developer Guide .

AWS Savings Plans

Savings Plans are a pricing model that offer significant savings on AWS usage (for example, on Amazon EC2 instances). You commit to a consistent amount of usage, in USD per hour, for a term of 1 or 3 years, and receive a lower price for that usage. For more information, see the AWS Savings Plans User Guide.

Amazon Timestream Query

Amazon MemoryDB

MemoryDB for Redis is a fully managed, Redis-compatible, in-memory database that delivers ultra-fast performance and Multi-AZ durability for modern applications built using microservices architectures. MemoryDB stores the entire database in-memory, enabling low latency and high throughput data access. It is compatible with Redis, a popular open source data store, enabling you to leverage Redis’ flexible and friendly data structures, APIs, and commands.

Managed Streaming for Kafka Connect

Amazon WorkDocs

The WorkDocs API is designed for the following use cases: File Migration: File migration applications are supported for users who want to migrate their files from an on-premises or off-premises file system or service. Users can insert files into a user directory structure, as well as allow for basic metadata changes, such as modifications to the permissions of files. Security: Support security applications are supported for users who have additional security needs, such as antivirus or data loss prevention. The API actions, along with AWS CloudTrail, allow these applications to detect when changes occur in Amazon WorkDocs. Then, the application can take the necessary actions and replace the target file. If the target file violates the policy, the application can also choose to email the user. eDiscovery/Analytics: General administrative applications are supported, such as eDiscovery and analytics. These applications can choose to mimic or record the actions in an Amazon WorkDocs site, along with AWS CloudTrail, to replicate data for eDiscovery, backup, or analytical applications. All Amazon WorkDocs API actions are Amazon authenticated and certificate-signed. They not only require the use of the AWS SDK, but also allow for the exclusive use of IAM users and roles to help facilitate access, trust, and permission policies. By creating a role and allowing an IAM user to access the Amazon WorkDocs site, the IAM user gains full administrative visibility into the entire Amazon WorkDocs site (or as set in the IAM policy). This includes, but is not limited to, the ability to modify file permissions and upload any file to any user. This allows developers to perform the three use cases above, as well as give users the ability to grant access on a selective basis using the IAM model.

AWS Cloud Map

Cloud Map With Cloud Map, you can configure public DNS, private DNS, or HTTP namespaces that your microservice applications run in. When an instance becomes available, you can call the Cloud Map API to register the instance with Cloud Map. For public or private DNS namespaces, Cloud Map automatically creates DNS records and an optional health check. Clients that submit public or private DNS queries, or HTTP requests, for the service receive an answer that contains up to eight healthy records.

Amazon SageMaker Service

Provides APIs for creating and managing Amazon SageMaker resources. Other Resources: Amazon SageMaker Developer Guide Amazon Augmented AI Runtime API Reference

Amazon Lookout for Vision

This is the Amazon Lookout for Vision API Reference. It provides descriptions of actions, data types, common parameters, and common errors. Amazon Lookout for Vision enables you to find visual defects in industrial products, accurately and at scale. It uses computer vision to identify missing components in an industrial product, damage to vehicles or structures, irregularities in production lines, and even minuscule defects in silicon wafers — or any other physical item where quality is important such as a missing capacitor on printed circuit boards.

Other APIs in the same category

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

Amazon AppIntegrations Service

The Amazon AppIntegrations service enables you to configure and reuse connections to external applications. For information about how you can use external applications with Amazon Connect, see Set up pre-built integrations in the Amazon Connect Administrator Guide.

Azure Location Based Services Resource Provider

azure.com
Resource Provider

Elastic Load Balancing

Elastic Load Balancing A load balancer distributes incoming traffic across targets, such as your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered targets and ensures that it routes traffic only to healthy targets. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer. You configure a target group with a protocol and port number for connections from the load balancer to the targets, and with health check settings to be used when checking the health status of the targets. Elastic Load Balancing supports the following types of load balancers: Application Load Balancers, Network Load Balancers, Gateway Load Balancers, and Classic Load Balancers. This reference covers the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). For more information, see the Elastic Load Balancing User Guide. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds.

AWS IoT Fleet Hub

With Fleet Hub for AWS IoT Device Management you can build stand-alone web applications for monitoring the health of your device fleets. Fleet Hub for AWS IoT Device Management is in public preview and is subject to change.

Microsoft.Support

azure.com
Microsoft Azure Support Resource Provider.

Azure Migrate Hub

azure.com
Migrate your workloads to Azure.

AutomationManagement

azure.com

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Email Templates associated with your Azure API Management deployment.

Personalizer Client

azure.com
Personalizer Service is an Azure Cognitive Service that makes it easy to target content and experiences without complex pre-analysis or cleanup of past data. Given a context and featurized content, the Personalizer Service returns which content item to show to users in rewardActionId. As rewards are sent in response to the use of rewardActionId, the reinforcement learning algorithm will improve the model and improve performance of future rank calls.

Amazon Personalize

Amazon Personalize is a machine learning service that makes it easy to add individualized recommendations to customers.

Azure Data Catalog Resource Provider

azure.com
The Azure Data Catalog Resource Provider Services API.