Mock sample for your project: Amazon Personalize API

Integrate with "Amazon Personalize API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Personalize

amazonaws.com

Version: 2018-05-22


Use this API in your project

Speed up your application development by using "Amazon Personalize API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
It also improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Amazon Personalize is a machine learning service that makes it easy to add individualized recommendations to customers.

Other APIs by amazonaws.com

Amazon Kinesis

Amazon Kinesis Data Streams Service API Reference Amazon Kinesis Data Streams is a managed service that scales elastically for real-time processing of streaming big data.

Amazon Elastic Inference

Elastic Inference public APIs.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

Amazon CodeGuru Profiler

This section provides documentation for the Amazon CodeGuru Profiler API operations. Amazon CodeGuru Profiler collects runtime performance data from your live applications, and provides recommendations that can help you fine-tune your application performance. Using machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of code and suggest ways you can improve efficiency and remove CPU bottlenecks. Amazon CodeGuru Profiler provides different visualizations of profiling data to help you identify what code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU utilization. Amazon CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM) languages and Python. While CodeGuru Profiler supports both visualizations and recommendations for applications written in Java, it can also generate visualizations and a subset of recommendations for applications written in other JVM languages and Python. For more information, see What is Amazon CodeGuru Profiler in the Amazon CodeGuru Profiler User Guide.

AWS IoT Fleet Hub

With Fleet Hub for AWS IoT Device Management you can build stand-alone web applications for monitoring the health of your device fleets. Fleet Hub for AWS IoT Device Management is in public preview and is subject to change.

Application Auto Scaling

With Application Auto Scaling, you can configure automatic scaling for the following resources: Amazon AppStream 2.0 fleets Amazon Aurora Replicas Amazon Comprehend document classification and entity recognizer endpoints Amazon DynamoDB tables and global secondary indexes throughput capacity Amazon ECS services Amazon ElastiCache for Redis clusters (replication groups) Amazon EMR clusters Amazon Keyspaces (for Apache Cassandra) tables Lambda function provisioned concurrency Amazon Managed Streaming for Apache Kafka broker storage Amazon SageMaker endpoint variants Spot Fleet (Amazon EC2) requests Custom resources provided by your own applications or services API Summary The Application Auto Scaling service API includes three key sets of actions: Register and manage scalable targets - Register Amazon Web Services or custom resources as scalable targets (a resource that Application Auto Scaling can scale), set minimum and maximum capacity limits, and retrieve information on existing scalable targets. Configure and manage automatic scaling - Define scaling policies to dynamically scale your resources in response to CloudWatch alarms, schedule one-time or recurring scaling actions, and retrieve your recent scaling activity history. Suspend and resume scaling - Temporarily suspend and later resume automatic scaling by calling the RegisterScalableTarget API action for any Application Auto Scaling scalable target. You can suspend and resume (individually or in combination) scale-out activities that are triggered by a scaling policy, scale-in activities that are triggered by a scaling policy, and scheduled scaling. To learn more about Application Auto Scaling, including information about granting IAM users required permissions for Application Auto Scaling actions, see the Application Auto Scaling User Guide.

AWS Backup

Backup Backup is a unified backup service designed to protect Amazon Web Services services and their associated data. Backup simplifies the creation, migration, restoration, and deletion of backups, while also providing reporting and auditing.

AWS IoT Greengrass V2

IoT Greengrass brings local compute, messaging, data management, sync, and ML inference capabilities to edge devices. This enables devices to collect and analyze data closer to the source of information, react autonomously to local events, and communicate securely with each other on local networks. Local devices can also communicate securely with Amazon Web Services IoT Core and export IoT data to the Amazon Web Services Cloud. IoT Greengrass developers can use Lambda functions and components to create and deploy applications to fleets of edge devices for local operation. IoT Greengrass Version 2 provides a new major version of the IoT Greengrass Core software, new APIs, and a new console. Use this API reference to learn how to use the IoT Greengrass V2 API operations to manage components, manage deployments, and core devices. For more information, see What is IoT Greengrass? in the IoT Greengrass V2 Developer Guide.

Amazon GameLift

Amazon GameLift Service GameLift provides solutions for hosting session-based multiplayer game servers in the cloud, including tools for deploying, operating, and scaling game servers. Built on AWS global computing infrastructure, GameLift helps you deliver high-performance, high-reliability, low-cost game servers while dynamically scaling your resource usage to meet player demand. About GameLift solutions Get more information on these GameLift solutions in the GameLift Developer Guide. GameLift managed hosting -- GameLift offers a fully managed service to set up and maintain computing machines for hosting, manage game session and player session life cycle, and handle security, storage, and performance tracking. You can use automatic scaling tools to balance player demand and hosting costs, configure your game session management to minimize player latency, and add FlexMatch for matchmaking. Managed hosting with Realtime Servers -- With GameLift Realtime Servers, you can quickly configure and set up ready-to-go game servers for your game. Realtime Servers provides a game server framework with core GameLift infrastructure already built in. Then use the full range of GameLift managed hosting features, including FlexMatch, for your game. GameLift FleetIQ -- Use GameLift FleetIQ as a standalone service while hosting your games using EC2 instances and Auto Scaling groups. GameLift FleetIQ provides optimizations for game hosting, including boosting the viability of low-cost Spot Instances gaming. For a complete solution, pair the GameLift FleetIQ and FlexMatch standalone services. GameLift FlexMatch -- Add matchmaking to your game hosting solution. FlexMatch is a customizable matchmaking service for multiplayer games. Use FlexMatch as integrated with GameLift managed hosting or incorporate FlexMatch as a standalone service into your own hosting solution. About this API Reference This reference guide describes the low-level service API for Amazon GameLift. With each topic in this guide, you can find links to language-specific SDK guides and the AWS CLI reference. Useful links: GameLift API operations listed by tasks GameLift tools and resources

AWS Marketplace Entitlement Service

AWS Marketplace Entitlement Service This reference provides descriptions of the AWS Marketplace Entitlement Service API. AWS Marketplace Entitlement Service is used to determine the entitlement of a customer to a given product. An entitlement represents capacity in a product owned by the customer. For example, a customer might own some number of users or seats in an SaaS application or some amount of data capacity in a multi-tenant database. Getting Entitlement Records GetEntitlements - Gets the entitlements for a Marketplace product.

Amazon Kinesis Firehose

Amazon Kinesis Data Firehose API Reference Amazon Kinesis Data Firehose is a fully managed service that delivers real-time streaming data to destinations such as Amazon Simple Storage Service (Amazon S3), Amazon Elasticsearch Service (Amazon ES), Amazon Redshift, and Splunk.

Amazon Elastic Block Store

You can use the Amazon Elastic Block Store (Amazon EBS) direct APIs to create Amazon EBS snapshots, write data directly to your snapshots, read data on your snapshots, and identify the differences or changes between two snapshots. If you’re an independent software vendor (ISV) who offers backup services for Amazon EBS, the EBS direct APIs make it more efficient and cost-effective to track incremental changes on your Amazon EBS volumes through snapshots. This can be done without having to create new volumes from snapshots, and then use Amazon Elastic Compute Cloud (Amazon EC2) instances to compare the differences. You can create incremental snapshots directly from data on-premises into volumes and the cloud to use for quick disaster recovery. With the ability to write and read snapshots, you can write your on-premises data to an snapshot during a disaster. Then after recovery, you can restore it back to Amazon Web Services or on-premises from the snapshot. You no longer need to build and maintain complex mechanisms to copy data to and from Amazon EBS. This API reference provides detailed information about the actions, data types, parameters, and errors of the EBS direct APIs. For more information about the elements that make up the EBS direct APIs, and examples of how to use them effectively, see Accessing the Contents of an Amazon EBS Snapshot in the Amazon Elastic Compute Cloud User Guide. For more information about the supported Amazon Web Services Regions, endpoints, and service quotas for the EBS direct APIs, see Amazon Elastic Block Store Endpoints and Quotas in the Amazon Web Services General Reference.

Other APIs in the same category

GalleryManagementClient

azure.com
The Admin Gallery Management Client.

Amazon Kinesis Video Streams Archived Media

AWS Compute Optimizer

Compute Optimizer is a service that analyzes the configuration and utilization metrics of your Amazon Web Services compute resources, such as Amazon EC2 instances, Amazon EC2 Auto Scaling groups, Lambda functions, and Amazon EBS volumes. It reports whether your resources are optimal, and generates optimization recommendations to reduce the cost and improve the performance of your workloads. Compute Optimizer also provides recent utilization metric data, in addition to projected utilization metric data for the recommendations, which you can use to evaluate which recommendation provides the best price-performance trade-off. The analysis of your usage patterns can help you decide when to move or resize your running resources, and still meet your performance and capacity requirements. For more information about Compute Optimizer, including the required permissions to use the service, see the Compute Optimizer User Guide.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on User entity in Azure API Management deployment. The User entity in API Management represents the developers that call the APIs of the products to which they are subscribed.

AWS WAFV2

WAF This is the latest version of the WAF API, released in November, 2019. The names of the entities that you use to access this API, like endpoints and namespaces, all have the versioning information added, like "V2" or "v2", to distinguish from the prior version. We recommend migrating your resources to this version, because it has a number of significant improvements. If you used WAF prior to this release, you can't use this WAFV2 API to access any WAF resources that you created before. You can access your old rules, web ACLs, and other WAF resources only through the WAF Classic APIs. The WAF Classic APIs have retained the prior names, endpoints, and namespaces. For information, including how to migrate your WAF resources to this version, see the WAF Developer Guide. WAF is a web application firewall that lets you monitor the HTTP and HTTPS requests that are forwarded to Amazon CloudFront, an Amazon API Gateway REST API, an Application Load Balancer, or an AppSync GraphQL API. WAF also lets you control access to your content. Based on conditions that you specify, such as the IP addresses that requests originate from or the values of query strings, the Amazon API Gateway REST API, CloudFront distribution, the Application Load Balancer, or the AppSync GraphQL API responds to requests either with the requested content or with an HTTP 403 status code (Forbidden). You also can configure CloudFront to return a custom error page when a request is blocked. This API guide is for developers who need detailed information about WAF API actions, data types, and errors. For detailed information about WAF features and an overview of how to use WAF, see the WAF Developer Guide. You can make calls using the endpoints listed in WAF endpoints and quotas. For regional applications, you can use any of the endpoints in the list. A regional application can be an Application Load Balancer (ALB), an Amazon API Gateway REST API, or an AppSync GraphQL API. For Amazon CloudFront applications, you must use the API endpoint listed for US East (N. Virginia): us-east-1. Alternatively, you can use one of the Amazon Web Services SDKs to access an API that's tailored to the programming language or platform that you're using. For more information, see Amazon Web Services SDKs. We currently provide two versions of the WAF API: this API and the prior versions, the classic WAF APIs. This new API provides the same functionality as the older versions, with the following major improvements: You use one API for both global and regional applications. Where you need to distinguish the scope, you specify a Scope parameter and set it to CLOUDFRONT or REGIONAL. You can define a web ACL or rule group with a single call, and update it with a single call. You define all rule specifications in JSON format, and pass them to your rule group or web ACL calls. The limits WAF places on the use of rules more closely reflects the cost of running each type of rule. Rule groups include capacity settings, so you know the maximum cost of a rule group when you use it.

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for Components.

ApplicationInsightsManagementClient

azure.com
Azure Application Insights workbook type.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

AWS CloudHSM V2

For more information about AWS CloudHSM, see AWS CloudHSM and the AWS CloudHSM User Guide.

Amazon Kinesis Analytics

Amazon Kinesis Analytics Overview This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which only supports SQL applications. Version 2 of the API supports SQL and Java applications. For more information about version 2, see Amazon Kinesis Data Analytics API V2 Documentation. This is the Amazon Kinesis Analytics v1 API Reference. The Amazon Kinesis Analytics Developer Guide provides additional information.

AutomationManagement

azure.com

Amazon Machine Learning

Definition of the public APIs exposed by Amazon Machine Learning