Mock sample for your project: AWS Server Migration Service API

Integrate with "AWS Server Migration Service API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS Server Migration Service

amazonaws.com

Version: 2016-10-24


Use this API in your project

Speed up your application development by using "AWS Server Migration Service API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and allow you to stop relying on an external API to get the job done. No more API keys to provision, accesses to configure or unplanned downtime, just work.
Enhance your development infrastructure by mocking third party APIs during integrating testing.

Description

AWS Server Migration Service AWS Server Migration Service (AWS SMS) makes it easier and faster for you to migrate your on-premises workloads to AWS. To learn more about AWS SMS, see the following resources: AWS Server Migration Service product page AWS Server Migration Service User Guide

Other APIs by amazonaws.com

AWS Price List Service

Amazon Web Services Price List Service API (Amazon Web Services Price List Service) is a centralized and convenient way to programmatically query Amazon Web Services for services, products, and pricing information. The Amazon Web Services Price List Service uses standardized product attributes such as Location, Storage Class, and Operating System, and provides prices at the SKU level. You can use the Amazon Web Services Price List Service to build cost control and scenario planning tools, reconcile billing data, forecast future spend for budgeting purposes, and provide cost benefit analysis that compare your internal workloads with Amazon Web Services. Use GetServices without a service code to retrieve the service codes for all AWS services, then GetServices with a service code to retreive the attribute names for that service. After you have the service code and attribute names, you can use GetAttributeValues to see what values are available for an attribute. With the service code and an attribute name and value, you can use GetProducts to find specific products that you're interested in, such as an AmazonEC2 instance, with a Provisioned IOPS volumeType. Service Endpoint Amazon Web Services Price List Service API provides the following two endpoints: https://api.pricing.us-east-1.amazonaws.com https://api.pricing.ap-south-1.amazonaws.com

Amazon HealthLake

Amazon HealthLake is a HIPAA eligibile service that allows customers to store, transform, query, and analyze their FHIR-formatted data in a consistent fashion in the cloud.

Amazon Elastic Transcoder

AWS Elastic Transcoder Service The AWS Elastic Transcoder Service.

AWS Ground Station

Welcome to the AWS Ground Station API Reference. AWS Ground Station is a fully managed service that enables you to control satellite communications, downlink and process satellite data, and scale your satellite operations efficiently and cost-effectively without having to build or manage your own ground station infrastructure.

AWS Data Exchange

AWS Data Exchange is a service that makes it easy for AWS customers to exchange data in the cloud. You can use the AWS Data Exchange APIs to create, update, manage, and access file-based data set in the AWS Cloud. As a subscriber, you can view and access the data sets that you have an entitlement to through a subscription. You can use the APIS to download or copy your entitled data sets to Amazon S3 for use across a variety of AWS analytics and machine learning services. As a provider, you can create and manage your data sets that you would like to publish to a product. Being able to package and provide your data sets into products requires a few steps to determine eligibility. For more information, visit the AWS Data Exchange User Guide. A data set is a collection of data that can be changed or updated over time. Data sets can be updated using revisions, which represent a new version or incremental change to a data set. A revision contains one or more assets. An asset in AWS Data Exchange is a piece of data that can be stored as an Amazon S3 object. The asset can be a structured data file, an image file, or some other data file. Jobs are asynchronous import or export operations used to create or copy assets.

Amazon EC2 Container Service

Amazon Elastic Container Service Amazon Elastic Container Service (Amazon ECS) is a highly scalable, fast, container management service that makes it easy to run, stop, and manage Docker containers on a cluster. You can host your cluster on a serverless infrastructure that is managed by Amazon ECS by launching your services or tasks on Fargate. For more control, you can host your tasks on a cluster of Amazon Elastic Compute Cloud (Amazon EC2) instances that you manage. Amazon ECS makes it easy to launch and stop container-based applications with simple API calls, allows you to get the state of your cluster from a centralized service, and gives you access to many familiar Amazon EC2 features. You can use Amazon ECS to schedule the placement of containers across your cluster based on your resource needs, isolation policies, and availability requirements. Amazon ECS eliminates the need for you to operate your own cluster management and configuration management systems or worry about scaling your management infrastructure.

AWS IoT 1-Click Devices Service

Describes all of the AWS IoT 1-Click device-related API operations for the service.
Also provides sample requests, responses, and errors for the supported web services
protocols.

AWS IoT Fleet Hub

With Fleet Hub for AWS IoT Device Management you can build stand-alone web applications for monitoring the health of your device fleets. Fleet Hub for AWS IoT Device Management is in public preview and is subject to change.

AWS IoT Greengrass V2

IoT Greengrass brings local compute, messaging, data management, sync, and ML inference capabilities to edge devices. This enables devices to collect and analyze data closer to the source of information, react autonomously to local events, and communicate securely with each other on local networks. Local devices can also communicate securely with Amazon Web Services IoT Core and export IoT data to the Amazon Web Services Cloud. IoT Greengrass developers can use Lambda functions and components to create and deploy applications to fleets of edge devices for local operation. IoT Greengrass Version 2 provides a new major version of the IoT Greengrass Core software, new APIs, and a new console. Use this API reference to learn how to use the IoT Greengrass V2 API operations to manage components, manage deployments, and core devices. For more information, see What is IoT Greengrass? in the IoT Greengrass V2 Developer Guide.

AWS CodeStar connections

AWS CodeStar Connections This AWS CodeStar Connections API Reference provides descriptions and usage examples of the operations and data types for the AWS CodeStar Connections API. You can use the connections API to work with connections and installations. Connections are configurations that you use to connect AWS resources to external code repositories. Each connection is a resource that can be given to services such as CodePipeline to connect to a third-party repository such as Bitbucket. For example, you can add the connection in CodePipeline so that it triggers your pipeline when a code change is made to your third-party code repository. Each connection is named and associated with a unique ARN that is used to reference the connection. When you create a connection, the console initiates a third-party connection handshake. Installations are the apps that are used to conduct this handshake. For example, the installation for the Bitbucket provider type is the Bitbucket app. When you create a connection, you can choose an existing installation or create one. When you want to create a connection to an installed provider type such as GitHub Enterprise Server, you create a host for your connections. You can work with connections by calling: CreateConnection, which creates a uniquely named connection that can be referenced by services such as CodePipeline. DeleteConnection, which deletes the specified connection. GetConnection, which returns information about the connection, including the connection status. ListConnections, which lists the connections associated with your account. You can work with hosts by calling: CreateHost, which creates a host that represents the infrastructure where your provider is installed. DeleteHost, which deletes the specified host. GetHost, which returns information about the host, including the setup status. ListHosts, which lists the hosts associated with your account. You can work with tags in AWS CodeStar Connections by calling the following: ListTagsForResource, which gets information about AWS tags for a specified Amazon Resource Name (ARN) in AWS CodeStar Connections. TagResource, which adds or updates tags for a resource in AWS CodeStar Connections. UntagResource, which removes tags for a resource in AWS CodeStar Connections. For information about how to use AWS CodeStar Connections, see the Developer Tools User Guide.

Amazon Simple Email Service

Amazon Simple Email Service This document contains reference information for the Amazon Simple Email Service (Amazon SES) API, version 2010-12-01. This document is best used in conjunction with the Amazon SES Developer Guide. For a list of Amazon SES endpoints to use in service requests, see Regions and Amazon SES in the Amazon SES Developer Guide.

Amazon Connect Service

Amazon Connect is a cloud-based contact center solution that you use to set up and manage a customer contact center and provide reliable customer engagement at any scale. Amazon Connect provides metrics and real-time reporting that enable you to optimize contact routing. You can also resolve customer issues more efficiently by getting customers in touch with the appropriate agents. There are limits to the number of Amazon Connect resources that you can create. There are also limits to the number of requests that you can make per second. For more information, see Amazon Connect Service Quotas in the Amazon Connect Administrator Guide. You can connect programmatically to an AWS service by using an endpoint. For a list of Amazon Connect endpoints, see Amazon Connect Endpoints. Working with contact flows? Check out the Amazon Connect Flow language.

Other APIs in the same category

ApiManagementClient

azure.com
Use these REST APIs for performing operations on User entity in Azure API Management deployment. The User entity in API Management represents the developers that call the APIs of the products to which they are subscribed.

Service Quotas

With Service Quotas, you can view and manage your quotas easily as your AWS workloads grow. Quotas, also referred to as limits, are the maximum number of resources that you can create in your AWS account. For more information, see the Service Quotas User Guide.

Amazon Kinesis Analytics

Amazon Kinesis Data Analytics is a fully managed service that you can use to process and analyze streaming data using Java, SQL, or Scala. The service enables you to quickly author and run Java, SQL, or Scala code against streaming sources to perform time series analytics, feed real-time dashboards, and create real-time metrics.

AWS IoT Data Plane

IoT data IoT data enables secure, bi-directional communication between Internet-connected things (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. It implements a broker for applications and things to publish messages over HTTP (Publish) and retrieve, update, and delete shadows. A shadow is a persistent representation of your things and their state in the Amazon Web Services cloud. Find the endpoint address for actions in IoT data by running this CLI command: aws iot describe-endpoint --endpoint-type iot:Data-ATS The service name used by Amazon Web ServicesSignature Version 4 to sign requests is: iotdevicegateway.

Amazon Lex Model Building Service

Amazon Lex Build-Time Actions Amazon Lex is an AWS service for building conversational voice and text interfaces. Use these actions to create, update, and delete conversational bots for new and existing client applications.

Amazon Interactive Video Service

Introduction The Amazon Interactive Video Service (IVS) API is REST compatible, using a standard HTTP API and an AWS EventBridge event stream for responses. JSON is used for both requests and responses, including errors. The API is an AWS regional service, currently in these regions: us-west-2, us-east-1, and eu-west-1. All API request parameters and URLs are case sensitive. For a summary of notable documentation changes in each release, see Document History. Service Endpoints The following are the Amazon IVS service endpoints (all HTTPS): Region name: US West (Oregon) Region: us-west-2 Endpoint: ivs.us-west-2.amazonaws.com Region name: US East (Virginia) Region: us-east-1 Endpoint: ivs.us-east-1.amazonaws.com Region name: EU West (Dublin) Region: eu-west-1 Endpoint: ivs.eu-west-1.amazonaws.com Allowed Header Values Accept: application/json Accept-Encoding: gzip, deflate Content-Type: application/json Resources The following resources contain information about your IVS live stream (see Getting Started with Amazon IVS): Channel β€” Stores configuration data related to your live stream. You first create a channel and then use the channel’s stream key to start your live stream. See the Channel endpoints for more information. Stream key β€” An identifier assigned by Amazon IVS when you create a channel, which is then used to authorize streaming. See the StreamKey endpoints for more information. Treat the stream key like a secret, since it allows anyone to stream to the channel. Playback key pair β€” Video playback may be restricted using playback-authorization tokens, which use public-key encryption. A playback key pair is the public-private pair of keys used to sign and validate the playback-authorization token. See the PlaybackKeyPair endpoints for more information. Recording configuration β€” Stores configuration related to recording a live stream and where to store the recorded content. Multiple channels can reference the same recording configuration. See the Recording Configuration endpoints for more information. Tagging A tag is a metadata label that you assign to an AWS resource. A tag comprises a key and a value, both set by you. For example, you might set a tag as topic:nature to label a particular video category. See Tagging AWS Resources for more information, including restrictions that apply to tags. Tags can help you identify and organize your AWS resources. For example, you can use the same tag for different resources to indicate that they are related. You can also use tags to manage access (see Access Tags). The Amazon IVS API has these tag-related endpoints: TagResource, UntagResource, and ListTagsForResource. The following resources support tagging: Channels, Stream Keys, Playback Key Pairs, and Recording Configurations. Authentication versus Authorization Note the differences between these concepts: Authentication is about verifying identity. You need to be authenticated to sign Amazon IVS API requests. Authorization is about granting permissions. You need to be authorized to view Amazon IVS private channels. (Private channels are channels that are enabled for "playback authorization.") Authentication All Amazon IVS API requests must be authenticated with a signature. The AWS Command-Line Interface (CLI) and Amazon IVS Player SDKs take care of signing the underlying API calls for you. However, if your application calls the Amazon IVS API directly, it’s your responsibility to sign the requests. You generate a signature using valid AWS credentials that have permission to perform the requested action. For example, you must sign PutMetadata requests with a signature generated from an IAM user account that has the ivs:PutMetadata permission. For more information: Authentication and generating signatures β€” See Authenticating Requests (AWS Signature Version 4) in the AWS General Reference. Managing Amazon IVS permissions β€” See Identity and Access Management on the Security page of the Amazon IVS User Guide. Channel Endpoints CreateChannel β€” Creates a new channel and an associated stream key to start streaming. GetChannel β€” Gets the channel configuration for the specified channel ARN (Amazon Resource Name). BatchGetChannel β€” Performs GetChannel on multiple ARNs simultaneously. ListChannels β€” Gets summary information about all channels in your account, in the AWS region where the API request is processed. This list can be filtered to match a specified name or recording-configuration ARN. Filters are mutually exclusive and cannot be used together. If you try to use both filters, you will get an error (409 Conflict Exception). UpdateChannel β€” Updates a channel's configuration. This does not affect an ongoing stream of this channel. You must stop and restart the stream for the changes to take effect. DeleteChannel β€” Deletes the specified channel. StreamKey Endpoints CreateStreamKey β€” Creates a stream key, used to initiate a stream, for the specified channel ARN. GetStreamKey β€” Gets stream key information for the specified ARN. BatchGetStreamKey β€” Performs GetStreamKey on multiple ARNs simultaneously. ListStreamKeys β€” Gets summary information about stream keys for the specified channel. DeleteStreamKey β€” Deletes the stream key for the specified ARN, so it can no longer be used to stream. Stream Endpoints GetStream β€” Gets information about the active (live) stream on a specified channel. ListStreams β€” Gets summary information about live streams in your account, in the AWS region where the API request is processed. StopStream β€” Disconnects the incoming RTMPS stream for the specified channel. Can be used in conjunction with DeleteStreamKey to prevent further streaming to a channel. PutMetadata β€” Inserts metadata into the active stream of the specified channel. A maximum of 5 requests per second per channel is allowed, each with a maximum 1 KB payload. (If 5 TPS is not sufficient for your needs, we recommend batching your data into a single PutMetadata call.) PlaybackKeyPair Endpoints For more information, see Setting Up Private Channels in the Amazon IVS User Guide. ImportPlaybackKeyPair β€” Imports the public portion of a new key pair and returns its arn and fingerprint. The privateKey can then be used to generate viewer authorization tokens, to grant viewers access to private channels (channels enabled for playback authorization). GetPlaybackKeyPair β€” Gets a specified playback authorization key pair and returns the arn and fingerprint. The privateKey held by the caller can be used to generate viewer authorization tokens, to grant viewers access to private channels. ListPlaybackKeyPairs β€” Gets summary information about playback key pairs. DeletePlaybackKeyPair β€” Deletes a specified authorization key pair. This invalidates future viewer tokens generated using the key pair’s privateKey. RecordingConfiguration Endpoints CreateRecordingConfiguration β€” Creates a new recording configuration, used to enable recording to Amazon S3. GetRecordingConfiguration β€” Gets the recording-configuration metadata for the specified ARN. ListRecordingConfigurations β€” Gets summary information about all recording configurations in your account, in the AWS region where the API request is processed. DeleteRecordingConfiguration β€” Deletes the recording configuration for the specified ARN. AWS Tags Endpoints TagResource β€” Adds or updates tags for the AWS resource with the specified ARN. UntagResource β€” Removes tags from the resource with the specified ARN. ListTagsForResource β€” Gets information about AWS tags for the specified ARN.

Amazon Kinesis

Amazon Kinesis Data Streams Service API Reference Amazon Kinesis Data Streams is a managed service that scales elastically for real-time processing of streaming big data.

Amazon CloudWatch Logs

You can use Amazon CloudWatch Logs to monitor, store, and access your log files from EC2 instances, CloudTrail, and other sources. You can then retrieve the associated log data from CloudWatch Logs using the CloudWatch console, CloudWatch Logs commands in the Amazon Web Services CLI, CloudWatch Logs API, or CloudWatch Logs SDK. You can use CloudWatch Logs to: Monitor logs from EC2 instances in real-time : You can use CloudWatch Logs to monitor applications and systems using log data. For example, CloudWatch Logs can track the number of errors that occur in your application logs and send you a notification whenever the rate of errors exceeds a threshold that you specify. CloudWatch Logs uses your log data for monitoring so no code changes are required. For example, you can monitor application logs for specific literal terms (such as "NullReferenceException") or count the number of occurrences of a literal term at a particular position in log data (such as "404" status codes in an Apache access log). When the term you are searching for is found, CloudWatch Logs reports the data to a CloudWatch metric that you specify. Monitor CloudTrail logged events : You can create alarms in CloudWatch and receive notifications of particular API activity as captured by CloudTrail. You can use the notification to perform troubleshooting. Archive log data : You can use CloudWatch Logs to store your log data in highly durable storage. You can change the log retention setting so that any log events older than this setting are automatically deleted. The CloudWatch Logs agent makes it easy to quickly send both rotated and non-rotated log data off of a host and into the log service. You can then access the raw log data when you need it.

AWS MediaTailor

Use the AWS Elemental MediaTailor SDKs and CLI to configure scalable ad insertion and linear channels. With MediaTailor, you can assemble existing content into a linear stream and serve targeted ads to viewers while maintaining broadcast quality in over-the-top (OTT) video applications. For information about using the service, including detailed information about the settings covered in this guide, see the AWS Elemental MediaTailor User Guide. Through the SDKs and the CLI you manage AWS Elemental MediaTailor configurations and channels the same as you do through the console. For example, you specify ad insertion behavior and mapping information for the origin server and the ad decision server (ADS).

AutomationManagement

azure.com

Amazon Inspector

Amazon Inspector Amazon Inspector enables you to analyze the behavior of your AWS resources and to identify potential security issues. For more information, see Amazon Inspector User Guide.

StorageManagementClient

azure.com
The Admin Storage Management Client.