Mock sample for your project: AWS Outposts API

Integrate with "AWS Outposts API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS Outposts

amazonaws.com

Version: 2019-12-03


Use this API in your project

Start working with "AWS Outposts API" right away by using this ready-to-use mock sample. API mocking can greatly speed up your application development by removing all the tedious tasks or issues: API key provisioning, account creation, unplanned downtime, etc.
It also helps reduce your dependency on third-party APIs and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

AWS Outposts is a fully managed service that extends AWS infrastructure, APIs, and tools to customer premises. By providing local access to AWS managed infrastructure, AWS Outposts enables customers to build and run applications on premises using the same programming interfaces as in AWS Regions, while using local compute and storage resources for lower latency and local data processing needs.

Other APIs by amazonaws.com

Amazon Lex Runtime V2

Amazon Connect Service

Amazon Connect is a cloud-based contact center solution that you use to set up and manage a customer contact center and provide reliable customer engagement at any scale. Amazon Connect provides metrics and real-time reporting that enable you to optimize contact routing. You can also resolve customer issues more efficiently by getting customers in touch with the appropriate agents. There are limits to the number of Amazon Connect resources that you can create. There are also limits to the number of requests that you can make per second. For more information, see Amazon Connect Service Quotas in the Amazon Connect Administrator Guide. You can connect programmatically to an AWS service by using an endpoint. For a list of Amazon Connect endpoints, see Amazon Connect Endpoints. Working with contact flows? Check out the Amazon Connect Flow language.

Amazon GuardDuty

Amazon GuardDuty is a continuous security monitoring service that analyzes and processes the following data sources: VPC Flow Logs, AWS CloudTrail event logs, and DNS logs. It uses threat intelligence feeds (such as lists of malicious IPs and domains) and machine learning to identify unexpected, potentially unauthorized, and malicious activity within your AWS environment. This can include issues like escalations of privileges, uses of exposed credentials, or communication with malicious IPs, URLs, or domains. For example, GuardDuty can detect compromised EC2 instances that serve malware or mine bitcoin. GuardDuty also monitors AWS account access behavior for signs of compromise. Some examples of this are unauthorized infrastructure deployments such as EC2 instances deployed in a Region that has never been used, or unusual API calls like a password policy change to reduce password strength. GuardDuty informs you of the status of your AWS environment by producing security findings that you can view in the GuardDuty console or through Amazon CloudWatch events. For more information, see the Amazon GuardDuty User Guide .

AWS App Mesh

App Mesh is a service mesh based on the Envoy proxy that makes it easy to monitor and control microservices. App Mesh standardizes how your microservices communicate, giving you end-to-end visibility and helping to ensure high availability for your applications. App Mesh gives you consistent visibility and network traffic controls for every microservice in an application. You can use App Mesh with Amazon Web Services Fargate, Amazon ECS, Amazon EKS, Kubernetes on Amazon Web Services, and Amazon EC2. App Mesh supports microservice applications that use service discovery naming for their components. For more information about service discovery on Amazon ECS, see Service Discovery in the Amazon Elastic Container Service Developer Guide. Kubernetes kube-dns and coredns are supported. For more information, see DNS for Services and Pods in the Kubernetes documentation.

Amazon EMR

Amazon EMR is a web service that makes it easier to process large amounts of data efficiently. Amazon EMR uses Hadoop processing combined with several Amazon Web Services services to do tasks such as web indexing, data mining, log file analysis, machine learning, scientific simulation, and data warehouse management.

Amazon Data Lifecycle Manager

Amazon Data Lifecycle Manager With Amazon Data Lifecycle Manager, you can manage the lifecycle of your Amazon Web Services resources. You create lifecycle policies, which are used to automate operations on the specified resources. Amazon DLM supports Amazon EBS volumes and snapshots. For information about using Amazon DLM with Amazon EBS, see Automating the Amazon EBS Snapshot Lifecycle in the Amazon EC2 User Guide.

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

AWS CodeDeploy

AWS CodeDeploy AWS CodeDeploy is a deployment service that automates application deployments to Amazon EC2 instances, on-premises instances running in your own facility, serverless AWS Lambda functions, or applications in an Amazon ECS service. You can deploy a nearly unlimited variety of application content, such as an updated Lambda function, updated applications in an Amazon ECS service, code, web and configuration files, executables, packages, scripts, multimedia files, and so on. AWS CodeDeploy can deploy application content stored in Amazon S3 buckets, GitHub repositories, or Bitbucket repositories. You do not need to make changes to your existing code before you can use AWS CodeDeploy. AWS CodeDeploy makes it easier for you to rapidly release new features, helps you avoid downtime during application deployment, and handles the complexity of updating your applications, without many of the risks associated with error-prone manual deployments. AWS CodeDeploy Components Use the information in this guide to help you work with the following AWS CodeDeploy components: Application : A name that uniquely identifies the application you want to deploy. AWS CodeDeploy uses this name, which functions as a container, to ensure the correct combination of revision, deployment configuration, and deployment group are referenced during a deployment. Deployment group : A set of individual instances, CodeDeploy Lambda deployment configuration settings, or an Amazon ECS service and network details. A Lambda deployment group specifies how to route traffic to a new version of a Lambda function. An Amazon ECS deployment group specifies the service created in Amazon ECS to deploy, a load balancer, and a listener to reroute production traffic to an updated containerized application. An EC2/On-premises deployment group contains individually tagged instances, Amazon EC2 instances in Amazon EC2 Auto Scaling groups, or both. All deployment groups can specify optional trigger, alarm, and rollback settings. Deployment configuration : A set of deployment rules and deployment success and failure conditions used by AWS CodeDeploy during a deployment. Deployment : The process and the components used when updating a Lambda function, a containerized application in an Amazon ECS service, or of installing content on one or more instances. Application revisions : For an AWS Lambda deployment, this is an AppSpec file that specifies the Lambda function to be updated and one or more functions to validate deployment lifecycle events. For an Amazon ECS deployment, this is an AppSpec file that specifies the Amazon ECS task definition, container, and port where production traffic is rerouted. For an EC2/On-premises deployment, this is an archive file that contains source content—source code, webpages, executable files, and deployment scripts—along with an AppSpec file. Revisions are stored in Amazon S3 buckets or GitHub repositories. For Amazon S3, a revision is uniquely identified by its Amazon S3 object key and its ETag, version, or both. For GitHub, a revision is uniquely identified by its commit ID. This guide also contains information to help you get details about the instances in your deployments, to make on-premises instances available for AWS CodeDeploy deployments, to get details about a Lambda function deployment, and to get details about Amazon ECS service deployments. AWS CodeDeploy Information Resources AWS CodeDeploy User Guide AWS CodeDeploy API Reference Guide AWS CLI Reference for AWS CodeDeploy AWS CodeDeploy Developer Forum

AWS DataSync

DataSync DataSync is a managed data transfer service that makes it simpler for you to automate moving data between on-premises storage and Amazon Simple Storage Service (Amazon S3) or Amazon Elastic File System (Amazon EFS). This API interface reference for DataSync contains documentation for a programming interface that you can use to manage DataSync.

AWS Certificate Manager Private Certificate Authority

This is the ACM Private CA API Reference. It provides descriptions, syntax, and usage examples for each of the actions and data types involved in creating and managing private certificate authorities (CA) for your organization. The documentation for each action shows the Query API request parameters and the XML response. Alternatively, you can use one of the AWS SDKs to access an API that's tailored to the programming language or platform that you're using. For more information, see AWS SDKs. Each ACM Private CA API operation has a quota that determines the number of times the operation can be called per second. ACM Private CA throttles API requests at different rates depending on the operation. Throttling means that ACM Private CA rejects an otherwise valid request because the request exceeds the operation's quota for the number of requests per second. When a request is throttled, ACM Private CA returns a ThrottlingException error. ACM Private CA does not guarantee a minimum request rate for APIs. To see an up-to-date list of your ACM Private CA quotas, or to request a quota increase, log into your AWS account and visit the Service Quotas console.

Amazon DynamoDB

Amazon DynamoDB Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with seamless scalability. DynamoDB lets you offload the administrative burdens of operating and scaling a distributed database, so that you don't have to worry about hardware provisioning, setup and configuration, replication, software patching, or cluster scaling. With DynamoDB, you can create database tables that can store and retrieve any amount of data, and serve any level of request traffic. You can scale up or scale down your tables' throughput capacity without downtime or performance degradation, and use the AWS Management Console to monitor resource utilization and performance metrics. DynamoDB automatically spreads the data and traffic for your tables over a sufficient number of servers to handle your throughput and storage requirements, while maintaining consistent and fast performance. All of your data is stored on solid state disks (SSDs) and automatically replicated across multiple Availability Zones in an AWS region, providing built-in high availability and data durability.

AWS Step Functions

AWS Step Functions AWS Step Functions is a service that lets you coordinate the components of distributed applications and microservices using visual workflows. You can use Step Functions to build applications from individual components, each of which performs a discrete function, or task, allowing you to scale and change applications quickly. Step Functions provides a console that helps visualize the components of your application as a series of steps. Step Functions automatically triggers and tracks each step, and retries steps when there are errors, so your application executes predictably and in the right order every time. Step Functions logs the state of each step, so you can quickly diagnose and debug any issues. Step Functions manages operations and underlying infrastructure to ensure your application is available at any scale. You can run tasks on AWS, your own servers, or any system that has access to AWS. You can access and use Step Functions using the console, the AWS SDKs, or an HTTP API. For more information about Step Functions, see the AWS Step Functions Developer Guide .

Other APIs in the same category

LogicAppsManagementClient

azure.com

SubscriptionsManagementClient

azure.com
The Admin Subscriptions Management Client.

Amazon Data Lifecycle Manager

Amazon Data Lifecycle Manager With Amazon Data Lifecycle Manager, you can manage the lifecycle of your Amazon Web Services resources. You create lifecycle policies, which are used to automate operations on the specified resources. Amazon DLM supports Amazon EBS volumes and snapshots. For information about using Amazon DLM with Amazon EBS, see Automating the Amazon EBS Snapshot Lifecycle in the Amazon EC2 User Guide.

UpdateAdminClient

azure.com
The Update Admin Management Client.

DeploymentAdminClient

azure.com
Deployment Admin Client.

Amazon CloudWatch Events

Amazon EventBridge helps you to respond to state changes in your Amazon Web Services resources. When your resources change state, they automatically send events to an event stream. You can create rules that match selected events in the stream and route them to targets to take action. You can also use rules to take action on a predetermined schedule. For example, you can configure rules to: Automatically invoke an Lambda function to update DNS entries when an event notifies you that Amazon EC2 instance enters the running state. Direct specific API records from CloudTrail to an Amazon Kinesis data stream for detailed analysis of potential security or availability risks. Periodically invoke a built-in target to create a snapshot of an Amazon EBS volume. For more information about the features of Amazon EventBridge, see the Amazon EventBridge User Guide.

AWS Storage Gateway

Storage Gateway Service Storage Gateway is the service that connects an on-premises software appliance with cloud-based storage to provide seamless and secure integration between an organization's on-premises IT environment and the Amazon Web Services storage infrastructure. The service enables you to securely upload data to the Cloud for cost effective backup and rapid disaster recovery. Use the following links to get started using the Storage Gateway Service API Reference : Storage Gateway required request headers : Describes the required headers that you must send with every POST request to Storage Gateway. Signing requests : Storage Gateway requires that you authenticate every request you send; this topic describes how sign such a request. Error responses : Provides reference information about Storage Gateway errors. Operations in Storage Gateway : Contains detailed descriptions of all Storage Gateway operations, their request parameters, response elements, possible errors, and examples of requests and responses. Storage Gateway endpoints and quotas : Provides a list of each Region and the endpoints available for use with Storage Gateway. Storage Gateway resource IDs are in uppercase. When you use these resource IDs with the Amazon EC2 API, EC2 expects resource IDs in lowercase. You must change your resource ID to lowercase to use it with the EC2 API. For example, in Storage Gateway the ID for a volume might be vol-AA22BB012345DAF670. When you use this ID with the EC2 API, you must change it to vol-aa22bb012345daf670. Otherwise, the EC2 API might not behave as expected. IDs for Storage Gateway volumes and Amazon EBS snapshots created from gateway volumes are changing to a longer format. Starting in December 2016, all new volumes and snapshots will be created with a 17-character string. Starting in April 2016, you will be able to use these longer IDs so you can test your systems with the new format. For more information, see Longer EC2 and EBS resource IDs. For example, a volume Amazon Resource Name (ARN) with the longer volume ID format looks like the following: arn:aws:storagegateway:us-west-2:111122223333:gateway/sgw-12A3456B/volume/vol-1122AABBCCDDEEFFG. A snapshot ID with the longer ID format looks like the following: snap-78e226633445566ee. For more information, see Announcement: Heads-up – Longer Storage Gateway volume and snapshot IDs coming in 2016.

Redshift Data API Service

You can use the Amazon Redshift Data API to run queries on Amazon Redshift tables. You can run SQL statements, which are committed if the statement succeeds. For more information about the Amazon Redshift Data API, see Using the Amazon Redshift Data API in the Amazon Redshift Cluster Management Guide.

AWS Route53 Recovery Readiness

AWS Route53 Recovery Readiness

Amazon CloudWatch

Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.

Elastic Load Balancing

Elastic Load Balancing A load balancer distributes incoming traffic across targets, such as your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered targets and ensures that it routes traffic only to healthy targets. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer. You configure a target group with a protocol and port number for connections from the load balancer to the targets, and with health check settings to be used when checking the health status of the targets. Elastic Load Balancing supports the following types of load balancers: Application Load Balancers, Network Load Balancers, Gateway Load Balancers, and Classic Load Balancers. This reference covers the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). For more information, see the Elastic Load Balancing User Guide. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds.

AzureBridgeAdminClient

azure.com
AzureBridge Admin Client.