Mock sample for your project: Amazon MemoryDB API

Integrate with "Amazon MemoryDB API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon MemoryDB

amazonaws.com

Version: 2021-01-01


Use this API in your project

Start working with "Amazon MemoryDB API" right away by using this ready-to-use mock sample. API mocking can greatly speed up your application development by removing all the tedious tasks or issues: API key provisioning, account creation, unplanned downtime, etc.
It also helps reduce your dependency on third-party APIs and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

MemoryDB for Redis is a fully managed, Redis-compatible, in-memory database that delivers ultra-fast performance and Multi-AZ durability for modern applications built using microservices architectures. MemoryDB stores the entire database in-memory, enabling low latency and high throughput data access. It is compatible with Redis, a popular open source data store, enabling you to leverage Redis’ flexible and friendly data structures, APIs, and commands.

Other APIs by amazonaws.com

AWS Signer

AWS Signer is a fully managed code signing service to help you ensure the trust and integrity of your code. AWS Signer supports the following applications: With code signing for AWS Lambda, you can sign AWS Lambda deployment packages. Integrated support is provided for Amazon S3, Amazon CloudWatch, and AWS CloudTrail. In order to sign code, you create a signing profile and then use Signer to sign Lambda zip files in S3. With code signing for IoT, you can sign code for any IoT device that is supported by AWS. IoT code signing is available for Amazon FreeRTOS and AWS IoT Device Management, and is integrated with AWS Certificate Manager (ACM). In order to sign code, you import a third-party code signing certificate using ACM, and use that to sign updates in Amazon FreeRTOS and AWS IoT Device Management. For more information about AWS Signer, see the AWS Signer Developer Guide.

Amazon Elasticsearch Service

Amazon Elasticsearch Configuration Service Use the Amazon Elasticsearch Configuration API to create, configure, and manage Elasticsearch domains. For sample code that uses the Configuration API, see the Amazon Elasticsearch Service Developer Guide. The guide also contains sample code for sending signed HTTP requests to the Elasticsearch APIs. The endpoint for configuration service requests is region-specific: es. region.amazonaws.com. For example, es.us-east-1.amazonaws.com. For a current list of supported regions and endpoints, see Regions and Endpoints.

Elastic Load Balancing

Elastic Load Balancing A load balancer distributes incoming traffic across targets, such as your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered targets and ensures that it routes traffic only to healthy targets. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer. You configure a target group with a protocol and port number for connections from the load balancer to the targets, and with health check settings to be used when checking the health status of the targets. Elastic Load Balancing supports the following types of load balancers: Application Load Balancers, Network Load Balancers, Gateway Load Balancers, and Classic Load Balancers. This reference covers the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). For more information, see the Elastic Load Balancing User Guide. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds.

AWS Direct Connect

Direct Connect links your internal network to an Direct Connect location over a standard Ethernet fiber-optic cable. One end of the cable is connected to your router, the other to an Direct Connect router. With this connection in place, you can create virtual interfaces directly to the Cloud (for example, to Amazon EC2 and Amazon S3) and to Amazon VPC, bypassing Internet service providers in your network path. A connection provides access to all Regions except the China (Beijing) and (China) Ningxia Regions. Amazon Web Services resources in the China Regions can only be accessed through locations associated with those Regions.

AWS CodeStar connections

AWS CodeStar Connections This AWS CodeStar Connections API Reference provides descriptions and usage examples of the operations and data types for the AWS CodeStar Connections API. You can use the connections API to work with connections and installations. Connections are configurations that you use to connect AWS resources to external code repositories. Each connection is a resource that can be given to services such as CodePipeline to connect to a third-party repository such as Bitbucket. For example, you can add the connection in CodePipeline so that it triggers your pipeline when a code change is made to your third-party code repository. Each connection is named and associated with a unique ARN that is used to reference the connection. When you create a connection, the console initiates a third-party connection handshake. Installations are the apps that are used to conduct this handshake. For example, the installation for the Bitbucket provider type is the Bitbucket app. When you create a connection, you can choose an existing installation or create one. When you want to create a connection to an installed provider type such as GitHub Enterprise Server, you create a host for your connections. You can work with connections by calling: CreateConnection, which creates a uniquely named connection that can be referenced by services such as CodePipeline. DeleteConnection, which deletes the specified connection. GetConnection, which returns information about the connection, including the connection status. ListConnections, which lists the connections associated with your account. You can work with hosts by calling: CreateHost, which creates a host that represents the infrastructure where your provider is installed. DeleteHost, which deletes the specified host. GetHost, which returns information about the host, including the setup status. ListHosts, which lists the hosts associated with your account. You can work with tags in AWS CodeStar Connections by calling the following: ListTagsForResource, which gets information about AWS tags for a specified Amazon Resource Name (ARN) in AWS CodeStar Connections. TagResource, which adds or updates tags for a resource in AWS CodeStar Connections. UntagResource, which removes tags for a resource in AWS CodeStar Connections. For information about how to use AWS CodeStar Connections, see the Developer Tools User Guide.

Amazon Kinesis

Amazon Kinesis Data Streams Service API Reference Amazon Kinesis Data Streams is a managed service that scales elastically for real-time processing of streaming big data.
Amazon MQ is a managed message broker service for Apache ActiveMQ and RabbitMQ that makes it easy to set up and operate message brokers in the cloud. A message broker allows software applications and components to communicate using various programming languages, operating systems, and formal messaging protocols.

Amazon Elastic Kubernetes Service

Amazon Elastic Kubernetes Service (Amazon EKS) is a managed service that makes it easy for you to run Kubernetes on Amazon Web Services without needing to stand up or maintain your own Kubernetes control plane. Kubernetes is an open-source system for automating the deployment, scaling, and management of containerized applications. Amazon EKS runs up-to-date versions of the open-source Kubernetes software, so you can use all the existing plugins and tooling from the Kubernetes community. Applications running on Amazon EKS are fully compatible with applications running on any standard Kubernetes environment, whether running in on-premises data centers or public clouds. This means that you can easily migrate any standard Kubernetes application to Amazon EKS without any code modification required.

AWS Application Discovery Service

AWS Application Discovery Service AWS Application Discovery Service helps you plan application migration projects. It automatically identifies servers, virtual machines (VMs), and network dependencies in your on-premises data centers. For more information, see the AWS Application Discovery Service FAQ. Application Discovery Service offers three ways of performing discovery and collecting data about your on-premises servers: Agentless discovery is recommended for environments that use VMware vCenter Server. This mode doesn't require you to install an agent on each host. It does not work in non-VMware environments. Agentless discovery gathers server information regardless of the operating systems, which minimizes the time required for initial on-premises infrastructure assessment. Agentless discovery doesn't collect information about network dependencies, only agent-based discovery collects that information. Agent-based discovery collects a richer set of data than agentless discovery by using the AWS Application Discovery Agent, which you install on one or more hosts in your data center. The agent captures infrastructure and application information, including an inventory of running processes, system performance information, resource utilization, and network dependencies. The information collected by agents is secured at rest and in transit to the Application Discovery Service database in the cloud. AWS Partner Network (APN) solutions integrate with Application Discovery Service, enabling you to import details of your on-premises environment directly into Migration Hub without using the discovery connector or discovery agent. Third-party application discovery tools can query AWS Application Discovery Service, and they can write to the Application Discovery Service database using the public API. In this way, you can import data into Migration Hub and view it, so that you can associate applications with servers and track migrations. Recommendations We recommend that you use agent-based discovery for non-VMware environments, and whenever you want to collect information about network dependencies. You can run agent-based and agentless discovery simultaneously. Use agentless discovery to complete the initial infrastructure assessment quickly, and then install agents on select hosts to collect additional information. Working With This Guide This API reference provides descriptions, syntax, and usage examples for each of the actions and data types for Application Discovery Service. The topic for each action shows the API request parameters and the response. Alternatively, you can use one of the AWS SDKs to access an API that is tailored to the programming language or platform that you're using. For more information, see AWS SDKs. Remember that you must set your Migration Hub home region before you call any of these APIs. You must make API calls for write actions (create, notify, associate, disassociate, import, or put) while in your home region, or a HomeRegionNotSetException error is returned. API calls for read actions (list, describe, stop, and delete) are permitted outside of your home region. Although it is unlikely, the Migration Hub home region could change. If you call APIs outside the home region, an InvalidInputException is returned. You must call GetHomeRegion to obtain the latest Migration Hub home region. This guide is intended for use with the AWS Application Discovery Service User Guide. All data is handled according to the AWS Privacy Policy. You can operate Application Discovery Service offline to inspect collected data before it is shared with the service.

Amazon Data Lifecycle Manager

Amazon Data Lifecycle Manager With Amazon Data Lifecycle Manager, you can manage the lifecycle of your Amazon Web Services resources. You create lifecycle policies, which are used to automate operations on the specified resources. Amazon DLM supports Amazon EBS volumes and snapshots. For information about using Amazon DLM with Amazon EBS, see Automating the Amazon EBS Snapshot Lifecycle in the Amazon EC2 User Guide.

AmazonNimbleStudio

AWS Data Exchange

AWS Data Exchange is a service that makes it easy for AWS customers to exchange data in the cloud. You can use the AWS Data Exchange APIs to create, update, manage, and access file-based data set in the AWS Cloud. As a subscriber, you can view and access the data sets that you have an entitlement to through a subscription. You can use the APIS to download or copy your entitled data sets to Amazon S3 for use across a variety of AWS analytics and machine learning services. As a provider, you can create and manage your data sets that you would like to publish to a product. Being able to package and provide your data sets into products requires a few steps to determine eligibility. For more information, visit the AWS Data Exchange User Guide. A data set is a collection of data that can be changed or updated over time. Data sets can be updated using revisions, which represent a new version or incremental change to a data set. A revision contains one or more assets. An asset in AWS Data Exchange is a piece of data that can be stored as an Amazon S3 object. The asset can be a structured data file, an image file, or some other data file. Jobs are asynchronous import or export operations used to create or copy assets.

Other APIs in the same category

FabricAdminClient

azure.com
Infrastructure role instance operation endpoints and objects.

MonitorManagementClient

azure.com

ApiManagementClient

azure.com
Use these REST APIs for getting the network connectivity status of your Azure API Management deployment. When the API Management service is deployed inside a Virtual Network, it needs to have access to other Azure resources it depends on. This also gives details about the DNS Servers visible to Azure API Management deployment.

Amazon WorkSpaces

Amazon WorkSpaces Service Amazon WorkSpaces enables you to provision virtual, cloud-based Microsoft Windows and Amazon Linux desktops for your users.

Amazon Data Lifecycle Manager

Amazon Data Lifecycle Manager With Amazon Data Lifecycle Manager, you can manage the lifecycle of your Amazon Web Services resources. You create lifecycle policies, which are used to automate operations on the specified resources. Amazon DLM supports Amazon EBS volumes and snapshots. For information about using Amazon DLM with Amazon EBS, see Automating the Amazon EBS Snapshot Lifecycle in the Amazon EC2 User Guide.

AWS Application Cost Profiler

This reference provides descriptions of the AWS Application Cost Profiler API. The AWS Application Cost Profiler API provides programmatic access to view, create, update, and delete application cost report definitions, as well as to import your usage data into the Application Cost Profiler service. For more information about using this service, see the AWS Application Cost Profiler User Guide.

AWS Data Exchange

AWS Data Exchange is a service that makes it easy for AWS customers to exchange data in the cloud. You can use the AWS Data Exchange APIs to create, update, manage, and access file-based data set in the AWS Cloud. As a subscriber, you can view and access the data sets that you have an entitlement to through a subscription. You can use the APIS to download or copy your entitled data sets to Amazon S3 for use across a variety of AWS analytics and machine learning services. As a provider, you can create and manage your data sets that you would like to publish to a product. Being able to package and provide your data sets into products requires a few steps to determine eligibility. For more information, visit the AWS Data Exchange User Guide. A data set is a collection of data that can be changed or updated over time. Data sets can be updated using revisions, which represent a new version or incremental change to a data set. A revision contains one or more assets. An asset in AWS Data Exchange is a piece of data that can be stored as an Amazon S3 object. The asset can be a structured data file, an image file, or some other data file. Jobs are asynchronous import or export operations used to create or copy assets.

Amazon Lex Model Building V2

Amazon Simple Queue Service

Welcome to the Amazon SQS API Reference. Amazon SQS is a reliable, highly-scalable hosted queue for storing messages as they travel between applications or microservices. Amazon SQS moves data between distributed application components and helps you decouple these components. For information on the permissions you need to use this API, see Identity and access management in the Amazon SQS Developer Guide. You can use Amazon Web Services SDKs to access Amazon SQS using your favorite programming language. The SDKs perform tasks such as the following automatically: Cryptographically sign your service requests Retry requests Handle error responses Additional information Amazon SQS Product Page Amazon SQS Developer Guide Making API Requests Amazon SQS Message Attributes Amazon SQS Dead-Letter Queues Amazon SQS in the Command Line Interface Amazon Web Services General Reference Regions and Endpoints

ApiManagementClient

azure.com
Use these REST APIs for managing OAuth2 servers configuration in your Azure API Management deployment. OAuth 2.0 can be used to authorize developer accounts for Azure API Management. For more information refer to How to OAuth2.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on tenant entity associated with your Azure API Management deployment. Using this entity you can manage properties and configuration that apply to the entire API Management service instance.

ApiManagementClient

azure.com
Use these REST APIs for performing operations in Azure API Management deployment.