Mock sample for your project: Amazon Location Service API

Integrate with "Amazon Location Service API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Location Service

amazonaws.com

Version: 2020-11-19


Use this API in your project

Integrate third-party APIs faster by using "Amazon Location Service API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
Improve your integration tests by mocking third-party APIs and cover more edge cases: slow response time, random failures, etc.

Description

Suite of geospatial services including Maps, Places, Routes, Tracking, and Geofencing

Other APIs by amazonaws.com

Amazon Prometheus Service

Amazon Managed Service for Prometheus

AWS Service Catalog

AWS Service Catalog AWS Service Catalog enables organizations to create and manage catalogs of IT services that are approved for AWS. To get the most out of this documentation, you should be familiar with the terminology discussed in AWS Service Catalog Concepts.

Amazon CloudSearch Domain

You use the AmazonCloudSearch2013 API to upload documents to a search domain and search those documents. The endpoints for submitting UploadDocuments, Search, and Suggest requests are domain-specific. To get the endpoints for your domain, use the Amazon CloudSearch configuration service DescribeDomains action. The domain endpoints are also displayed on the domain dashboard in the Amazon CloudSearch console. You submit suggest requests to the search endpoint. For more information, see the Amazon CloudSearch Developer Guide.

Amazon EMR

Amazon EMR is a web service that makes it easier to process large amounts of data efficiently. Amazon EMR uses Hadoop processing combined with several Amazon Web Services services to do tasks such as web indexing, data mining, log file analysis, machine learning, scientific simulation, and data warehouse management.

Amazon Kinesis Video Streams Archived Media

AWS IoT SiteWise

Welcome to the IoT SiteWise API Reference. IoT SiteWise is an Amazon Web Services service that connects Industrial Internet of Things (IIoT) devices to the power of the Amazon Web Services Cloud. For more information, see the IoT SiteWise User Guide. For information about IoT SiteWise quotas, see Quotas in the IoT SiteWise User Guide.

AWS CodeStar connections

AWS CodeStar Connections This AWS CodeStar Connections API Reference provides descriptions and usage examples of the operations and data types for the AWS CodeStar Connections API. You can use the connections API to work with connections and installations. Connections are configurations that you use to connect AWS resources to external code repositories. Each connection is a resource that can be given to services such as CodePipeline to connect to a third-party repository such as Bitbucket. For example, you can add the connection in CodePipeline so that it triggers your pipeline when a code change is made to your third-party code repository. Each connection is named and associated with a unique ARN that is used to reference the connection. When you create a connection, the console initiates a third-party connection handshake. Installations are the apps that are used to conduct this handshake. For example, the installation for the Bitbucket provider type is the Bitbucket app. When you create a connection, you can choose an existing installation or create one. When you want to create a connection to an installed provider type such as GitHub Enterprise Server, you create a host for your connections. You can work with connections by calling: CreateConnection, which creates a uniquely named connection that can be referenced by services such as CodePipeline. DeleteConnection, which deletes the specified connection. GetConnection, which returns information about the connection, including the connection status. ListConnections, which lists the connections associated with your account. You can work with hosts by calling: CreateHost, which creates a host that represents the infrastructure where your provider is installed. DeleteHost, which deletes the specified host. GetHost, which returns information about the host, including the setup status. ListHosts, which lists the hosts associated with your account. You can work with tags in AWS CodeStar Connections by calling the following: ListTagsForResource, which gets information about AWS tags for a specified Amazon Resource Name (ARN) in AWS CodeStar Connections. TagResource, which adds or updates tags for a resource in AWS CodeStar Connections. UntagResource, which removes tags for a resource in AWS CodeStar Connections. For information about how to use AWS CodeStar Connections, see the Developer Tools User Guide.

Auto Scaling

Amazon EC2 Auto Scaling Amazon EC2 Auto Scaling is designed to automatically launch or terminate EC2 instances based on user-defined scaling policies, scheduled actions, and health checks. For more information about Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling User Guide. For information about granting IAM users required permissions for calls to Amazon EC2 Auto Scaling, see Granting IAM users required permissions for Amazon EC2 Auto Scaling resources in the Amazon EC2 Auto Scaling API Reference.

Amazon Kinesis Video Streams Media

AWS Marketplace Catalog Service

Catalog API actions allow you to manage your entities through list, describe, and update capabilities. An entity can be a product or an offer on AWS Marketplace. You can automate your entity update process by integrating the AWS Marketplace Catalog API with your AWS Marketplace product build or deployment pipelines. You can also create your own applications on top of the Catalog API to manage your products on AWS Marketplace.

Amazon CloudWatch Logs

You can use Amazon CloudWatch Logs to monitor, store, and access your log files from EC2 instances, CloudTrail, and other sources. You can then retrieve the associated log data from CloudWatch Logs using the CloudWatch console, CloudWatch Logs commands in the Amazon Web Services CLI, CloudWatch Logs API, or CloudWatch Logs SDK. You can use CloudWatch Logs to: Monitor logs from EC2 instances in real-time : You can use CloudWatch Logs to monitor applications and systems using log data. For example, CloudWatch Logs can track the number of errors that occur in your application logs and send you a notification whenever the rate of errors exceeds a threshold that you specify. CloudWatch Logs uses your log data for monitoring so no code changes are required. For example, you can monitor application logs for specific literal terms (such as "NullReferenceException") or count the number of occurrences of a literal term at a particular position in log data (such as "404" status codes in an Apache access log). When the term you are searching for is found, CloudWatch Logs reports the data to a CloudWatch metric that you specify. Monitor CloudTrail logged events : You can create alarms in CloudWatch and receive notifications of particular API activity as captured by CloudTrail. You can use the notification to perform troubleshooting. Archive log data : You can use CloudWatch Logs to store your log data in highly durable storage. You can change the log retention setting so that any log events older than this setting are automatically deleted. The CloudWatch Logs agent makes it easy to quickly send both rotated and non-rotated log data off of a host and into the log service. You can then access the raw log data when you need it.

AWS Lambda

Lambda Overview This is the Lambda API Reference. The Lambda Developer Guide provides additional information. For the service overview, see What is Lambda, and for information about how the service works, see Lambda: How it Works in the Lambda Developer Guide.

Other APIs in the same category

ManagedLabsClient

azure.com
The Managed Labs Client.

Azure Alerts Management Service Resource Provider

azure.com
APIs for Azure Smart Detector Alert Rules CRUD operations.

AWS Resource Access Manager

This is the Resource Access Manager API Reference. This documentation provides descriptions and syntax for each of the actions and data types in RAM. RAM is a service that helps you securely share your Amazon Web Services resources across Amazon Web Services accounts and within your organization or organizational units (OUs) in Organizations. For supported resource types, you can also share resources with IAM roles and IAM users. If you have multiple Amazon Web Services accounts, you can use RAM to share those resources with other accounts. To learn more about RAM, see the following resources: Resource Access Manager product page Resource Access Manager User Guide

AmazonMWAA

Amazon Managed Workflows for Apache Airflow This section contains the Amazon Managed Workflows for Apache Airflow (MWAA) API reference documentation. For more information, see What Is Amazon MWAA?.

Amazon Prometheus Service

Amazon Managed Service for Prometheus

Auto Scaling

Amazon EC2 Auto Scaling Amazon EC2 Auto Scaling is designed to automatically launch or terminate EC2 instances based on user-defined scaling policies, scheduled actions, and health checks. For more information about Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling User Guide. For information about granting IAM users required permissions for calls to Amazon EC2 Auto Scaling, see Granting IAM users required permissions for Amazon EC2 Auto Scaling resources in the Amazon EC2 Auto Scaling API Reference.

Amazon CloudHSM

AWS CloudHSM Service This is documentation for AWS CloudHSM Classic. For more information, see AWS CloudHSM Classic FAQs, the AWS CloudHSM Classic User Guide, and the AWS CloudHSM Classic API Reference. For information about the current version of AWS CloudHSM, see AWS CloudHSM, the AWS CloudHSM User Guide, and the AWS CloudHSM API Reference.

Amazon Interactive Video Service

Introduction The Amazon Interactive Video Service (IVS) API is REST compatible, using a standard HTTP API and an AWS EventBridge event stream for responses. JSON is used for both requests and responses, including errors. The API is an AWS regional service, currently in these regions: us-west-2, us-east-1, and eu-west-1. All API request parameters and URLs are case sensitive. For a summary of notable documentation changes in each release, see Document History. Service Endpoints The following are the Amazon IVS service endpoints (all HTTPS): Region name: US West (Oregon) Region: us-west-2 Endpoint: ivs.us-west-2.amazonaws.com Region name: US East (Virginia) Region: us-east-1 Endpoint: ivs.us-east-1.amazonaws.com Region name: EU West (Dublin) Region: eu-west-1 Endpoint: ivs.eu-west-1.amazonaws.com Allowed Header Values Accept: application/json Accept-Encoding: gzip, deflate Content-Type: application/json Resources The following resources contain information about your IVS live stream (see Getting Started with Amazon IVS): Channel β€” Stores configuration data related to your live stream. You first create a channel and then use the channel’s stream key to start your live stream. See the Channel endpoints for more information. Stream key β€” An identifier assigned by Amazon IVS when you create a channel, which is then used to authorize streaming. See the StreamKey endpoints for more information. Treat the stream key like a secret, since it allows anyone to stream to the channel. Playback key pair β€” Video playback may be restricted using playback-authorization tokens, which use public-key encryption. A playback key pair is the public-private pair of keys used to sign and validate the playback-authorization token. See the PlaybackKeyPair endpoints for more information. Recording configuration β€” Stores configuration related to recording a live stream and where to store the recorded content. Multiple channels can reference the same recording configuration. See the Recording Configuration endpoints for more information. Tagging A tag is a metadata label that you assign to an AWS resource. A tag comprises a key and a value, both set by you. For example, you might set a tag as topic:nature to label a particular video category. See Tagging AWS Resources for more information, including restrictions that apply to tags. Tags can help you identify and organize your AWS resources. For example, you can use the same tag for different resources to indicate that they are related. You can also use tags to manage access (see Access Tags). The Amazon IVS API has these tag-related endpoints: TagResource, UntagResource, and ListTagsForResource. The following resources support tagging: Channels, Stream Keys, Playback Key Pairs, and Recording Configurations. Authentication versus Authorization Note the differences between these concepts: Authentication is about verifying identity. You need to be authenticated to sign Amazon IVS API requests. Authorization is about granting permissions. You need to be authorized to view Amazon IVS private channels. (Private channels are channels that are enabled for "playback authorization.") Authentication All Amazon IVS API requests must be authenticated with a signature. The AWS Command-Line Interface (CLI) and Amazon IVS Player SDKs take care of signing the underlying API calls for you. However, if your application calls the Amazon IVS API directly, it’s your responsibility to sign the requests. You generate a signature using valid AWS credentials that have permission to perform the requested action. For example, you must sign PutMetadata requests with a signature generated from an IAM user account that has the ivs:PutMetadata permission. For more information: Authentication and generating signatures β€” See Authenticating Requests (AWS Signature Version 4) in the AWS General Reference. Managing Amazon IVS permissions β€” See Identity and Access Management on the Security page of the Amazon IVS User Guide. Channel Endpoints CreateChannel β€” Creates a new channel and an associated stream key to start streaming. GetChannel β€” Gets the channel configuration for the specified channel ARN (Amazon Resource Name). BatchGetChannel β€” Performs GetChannel on multiple ARNs simultaneously. ListChannels β€” Gets summary information about all channels in your account, in the AWS region where the API request is processed. This list can be filtered to match a specified name or recording-configuration ARN. Filters are mutually exclusive and cannot be used together. If you try to use both filters, you will get an error (409 Conflict Exception). UpdateChannel β€” Updates a channel's configuration. This does not affect an ongoing stream of this channel. You must stop and restart the stream for the changes to take effect. DeleteChannel β€” Deletes the specified channel. StreamKey Endpoints CreateStreamKey β€” Creates a stream key, used to initiate a stream, for the specified channel ARN. GetStreamKey β€” Gets stream key information for the specified ARN. BatchGetStreamKey β€” Performs GetStreamKey on multiple ARNs simultaneously. ListStreamKeys β€” Gets summary information about stream keys for the specified channel. DeleteStreamKey β€” Deletes the stream key for the specified ARN, so it can no longer be used to stream. Stream Endpoints GetStream β€” Gets information about the active (live) stream on a specified channel. ListStreams β€” Gets summary information about live streams in your account, in the AWS region where the API request is processed. StopStream β€” Disconnects the incoming RTMPS stream for the specified channel. Can be used in conjunction with DeleteStreamKey to prevent further streaming to a channel. PutMetadata β€” Inserts metadata into the active stream of the specified channel. A maximum of 5 requests per second per channel is allowed, each with a maximum 1 KB payload. (If 5 TPS is not sufficient for your needs, we recommend batching your data into a single PutMetadata call.) PlaybackKeyPair Endpoints For more information, see Setting Up Private Channels in the Amazon IVS User Guide. ImportPlaybackKeyPair β€” Imports the public portion of a new key pair and returns its arn and fingerprint. The privateKey can then be used to generate viewer authorization tokens, to grant viewers access to private channels (channels enabled for playback authorization). GetPlaybackKeyPair β€” Gets a specified playback authorization key pair and returns the arn and fingerprint. The privateKey held by the caller can be used to generate viewer authorization tokens, to grant viewers access to private channels. ListPlaybackKeyPairs β€” Gets summary information about playback key pairs. DeletePlaybackKeyPair β€” Deletes a specified authorization key pair. This invalidates future viewer tokens generated using the key pair’s privateKey. RecordingConfiguration Endpoints CreateRecordingConfiguration β€” Creates a new recording configuration, used to enable recording to Amazon S3. GetRecordingConfiguration β€” Gets the recording-configuration metadata for the specified ARN. ListRecordingConfigurations β€” Gets summary information about all recording configurations in your account, in the AWS region where the API request is processed. DeleteRecordingConfiguration β€” Deletes the recording configuration for the specified ARN. AWS Tags Endpoints TagResource β€” Adds or updates tags for the AWS resource with the specified ARN. UntagResource β€” Removes tags from the resource with the specified ARN. ListTagsForResource β€” Gets information about AWS tags for the specified ARN.

Amazon Redshift

Amazon Redshift Overview This is an interface reference for Amazon Redshift. It contains documentation for one of the programming or command line interfaces you can use to manage Amazon Redshift clusters. Note that Amazon Redshift is asynchronous, which means that some interfaces may require techniques, such as polling or asynchronous callback handlers, to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a change is applied immediately, on the next instance reboot, or during the next maintenance window. For a summary of the Amazon Redshift cluster management interfaces, go to Using the Amazon Redshift Management Interfaces. Amazon Redshift manages all the work of setting up, operating, and scaling a data warehouse: provisioning capacity, monitoring and backing up the cluster, and applying patches and upgrades to the Amazon Redshift engine. You can focus on using your data to acquire new insights for your business and customers. If you are a first-time user of Amazon Redshift, we recommend that you begin by reading the Amazon Redshift Getting Started Guide. If you are a database developer, the Amazon Redshift Database Developer Guide explains how to design, build, query, and maintain the databases that make up your data warehouse.

Amazon Lex Model Building Service

Amazon Lex Build-Time Actions Amazon Lex is an AWS service for building conversational voice and text interfaces. Use these actions to create, update, and delete conversational bots for new and existing client applications.

AWS Migration Hub

The AWS Migration Hub API methods help to obtain server and application migration status and integrate your resource-specific migration tool by providing a programmatic interface to Migration Hub. Remember that you must set your AWS Migration Hub home region before you call any of these APIs, or a HomeRegionNotSetException error will be returned. Also, you must make the API calls while in your home region.

AWS Performance Insights

Amazon RDS Performance Insights Amazon RDS Performance Insights enables you to monitor and explore different dimensions of database load based on data captured from a running DB instance. The guide provides detailed information about Performance Insights data types, parameters and errors. When Performance Insights is enabled, the Amazon RDS Performance Insights API provides visibility into the performance of your DB instance. Amazon CloudWatch provides the authoritative source for AWS service-vended monitoring metrics. Performance Insights offers a domain-specific view of DB load. DB load is measured as Average Active Sessions. Performance Insights provides the data to API consumers as a two-dimensional time-series dataset. The time dimension provides DB load data for each time point in the queried time range. Each time point decomposes overall load in relation to the requested dimensions, measured at that time point. Examples include SQL, Wait event, User, and Host. To learn more about Performance Insights and Amazon Aurora DB instances, go to the Amazon Aurora User Guide. To learn more about Performance Insights and Amazon RDS DB instances, go to the Amazon RDS User Guide.