Mock sample for your project: Amazon Kinesis Video Streams API

Integrate with "Amazon Kinesis Video Streams API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Kinesis Video Streams

amazonaws.com

Version: 2017-09-30


Use this API in your project

Integrate third-party APIs faster by using "Amazon Kinesis Video Streams API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

Other APIs by amazonaws.com

Amazon CloudWatch Logs

You can use Amazon CloudWatch Logs to monitor, store, and access your log files from EC2 instances, CloudTrail, and other sources. You can then retrieve the associated log data from CloudWatch Logs using the CloudWatch console, CloudWatch Logs commands in the Amazon Web Services CLI, CloudWatch Logs API, or CloudWatch Logs SDK. You can use CloudWatch Logs to: Monitor logs from EC2 instances in real-time : You can use CloudWatch Logs to monitor applications and systems using log data. For example, CloudWatch Logs can track the number of errors that occur in your application logs and send you a notification whenever the rate of errors exceeds a threshold that you specify. CloudWatch Logs uses your log data for monitoring so no code changes are required. For example, you can monitor application logs for specific literal terms (such as "NullReferenceException") or count the number of occurrences of a literal term at a particular position in log data (such as "404" status codes in an Apache access log). When the term you are searching for is found, CloudWatch Logs reports the data to a CloudWatch metric that you specify. Monitor CloudTrail logged events : You can create alarms in CloudWatch and receive notifications of particular API activity as captured by CloudTrail. You can use the notification to perform troubleshooting. Archive log data : You can use CloudWatch Logs to store your log data in highly durable storage. You can change the log retention setting so that any log events older than this setting are automatically deleted. The CloudWatch Logs agent makes it easy to quickly send both rotated and non-rotated log data off of a host and into the log service. You can then access the raw log data when you need it.

AWS CodePipeline

AWS CodePipeline Overview This is the AWS CodePipeline API Reference. This guide provides descriptions of the actions and data types for AWS CodePipeline. Some functionality for your pipeline can only be configured through the API. For more information, see the AWS CodePipeline User Guide. You can use the AWS CodePipeline API to work with pipelines, stages, actions, and transitions. Pipelines are models of automated release processes. Each pipeline is uniquely named, and consists of stages, actions, and transitions. You can work with pipelines by calling: CreatePipeline, which creates a uniquely named pipeline. DeletePipeline, which deletes the specified pipeline. GetPipeline, which returns information about the pipeline structure and pipeline metadata, including the pipeline Amazon Resource Name (ARN). GetPipelineExecution, which returns information about a specific execution of a pipeline. GetPipelineState, which returns information about the current state of the stages and actions of a pipeline. ListActionExecutions, which returns action-level details for past executions. The details include full stage and action-level details, including individual action duration, status, any errors that occurred during the execution, and input and output artifact location details. ListPipelines, which gets a summary of all of the pipelines associated with your account. ListPipelineExecutions, which gets a summary of the most recent executions for a pipeline. StartPipelineExecution, which runs the most recent revision of an artifact through the pipeline. StopPipelineExecution, which stops the specified pipeline execution from continuing through the pipeline. UpdatePipeline, which updates a pipeline with edits or changes to the structure of the pipeline. Pipelines include stages. Each stage contains one or more actions that must complete before the next stage begins. A stage results in success or failure. If a stage fails, the pipeline stops at that stage and remains stopped until either a new version of an artifact appears in the source location, or a user takes action to rerun the most recent artifact through the pipeline. You can call GetPipelineState, which displays the status of a pipeline, including the status of stages in the pipeline, or GetPipeline, which returns the entire structure of the pipeline, including the stages of that pipeline. For more information about the structure of stages and actions, see AWS CodePipeline Pipeline Structure Reference. Pipeline stages include actions that are categorized into categories such as source or build actions performed in a stage of a pipeline. For example, you can use a source action to import artifacts into a pipeline from a source such as Amazon S3. Like stages, you do not work with actions directly in most cases, but you do define and interact with actions when working with pipeline operations such as CreatePipeline and GetPipelineState. Valid action categories are: Source Build Test Deploy Approval Invoke Pipelines also include transitions, which allow the transition of artifacts from one stage to the next in a pipeline after the actions in one stage complete. You can work with transitions by calling: DisableStageTransition, which prevents artifacts from transitioning to the next stage in a pipeline. EnableStageTransition, which enables transition of artifacts between stages in a pipeline. Using the API to integrate with AWS CodePipeline For third-party integrators or developers who want to create their own integrations with AWS CodePipeline, the expected sequence varies from the standard API user. To integrate with AWS CodePipeline, developers need to work with the following items: Jobs, which are instances of an action. For example, a job for a source action might import a revision of an artifact from a source. You can work with jobs by calling: AcknowledgeJob, which confirms whether a job worker has received the specified job. GetJobDetails, which returns the details of a job. PollForJobs, which determines whether there are any jobs to act on. PutJobFailureResult, which provides details of a job failure. PutJobSuccessResult, which provides details of a job success. Third party jobs, which are instances of an action created by a partner action and integrated into AWS CodePipeline. Partner actions are created by members of the AWS Partner Network. You can work with third party jobs by calling: AcknowledgeThirdPartyJob, which confirms whether a job worker has received the specified job. GetThirdPartyJobDetails, which requests the details of a job for a partner action. PollForThirdPartyJobs, which determines whether there are any jobs to act on. PutThirdPartyJobFailureResult, which provides details of a job failure. PutThirdPartyJobSuccessResult, which provides details of a job success.

AWS Glue DataBrew

Glue DataBrew is a visual, cloud-scale data-preparation service. DataBrew simplifies data preparation tasks, targeting data issues that are hard to spot and time-consuming to fix. DataBrew empowers users of all technical levels to visualize the data and perform one-click data transformations, with no coding required.

AWS CodeStar connections

AWS CodeStar Connections This AWS CodeStar Connections API Reference provides descriptions and usage examples of the operations and data types for the AWS CodeStar Connections API. You can use the connections API to work with connections and installations. Connections are configurations that you use to connect AWS resources to external code repositories. Each connection is a resource that can be given to services such as CodePipeline to connect to a third-party repository such as Bitbucket. For example, you can add the connection in CodePipeline so that it triggers your pipeline when a code change is made to your third-party code repository. Each connection is named and associated with a unique ARN that is used to reference the connection. When you create a connection, the console initiates a third-party connection handshake. Installations are the apps that are used to conduct this handshake. For example, the installation for the Bitbucket provider type is the Bitbucket app. When you create a connection, you can choose an existing installation or create one. When you want to create a connection to an installed provider type such as GitHub Enterprise Server, you create a host for your connections. You can work with connections by calling: CreateConnection, which creates a uniquely named connection that can be referenced by services such as CodePipeline. DeleteConnection, which deletes the specified connection. GetConnection, which returns information about the connection, including the connection status. ListConnections, which lists the connections associated with your account. You can work with hosts by calling: CreateHost, which creates a host that represents the infrastructure where your provider is installed. DeleteHost, which deletes the specified host. GetHost, which returns information about the host, including the setup status. ListHosts, which lists the hosts associated with your account. You can work with tags in AWS CodeStar Connections by calling the following: ListTagsForResource, which gets information about AWS tags for a specified Amazon Resource Name (ARN) in AWS CodeStar Connections. TagResource, which adds or updates tags for a resource in AWS CodeStar Connections. UntagResource, which removes tags for a resource in AWS CodeStar Connections. For information about how to use AWS CodeStar Connections, see the Developer Tools User Guide.

AmplifyBackend

AWS Amplify Admin API

Amazon CodeGuru Profiler

This section provides documentation for the Amazon CodeGuru Profiler API operations. Amazon CodeGuru Profiler collects runtime performance data from your live applications, and provides recommendations that can help you fine-tune your application performance. Using machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of code and suggest ways you can improve efficiency and remove CPU bottlenecks. Amazon CodeGuru Profiler provides different visualizations of profiling data to help you identify what code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU utilization. Amazon CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM) languages and Python. While CodeGuru Profiler supports both visualizations and recommendations for applications written in Java, it can also generate visualizations and a subset of recommendations for applications written in other JVM languages and Python. For more information, see What is Amazon CodeGuru Profiler in the Amazon CodeGuru Profiler User Guide.

Amazon Appflow

Welcome to the Amazon AppFlow API reference. This guide is for developers who need detailed information about the Amazon AppFlow API operations, data types, and errors. Amazon AppFlow is a fully managed integration service that enables you to securely transfer data between software as a service (SaaS) applications like Salesforce, Marketo, Slack, and ServiceNow, and Amazon Web Services like Amazon S3 and Amazon Redshift. Use the following links to get started on the Amazon AppFlow API: Actions : An alphabetical list of all Amazon AppFlow API operations. Data types : An alphabetical list of all Amazon AppFlow data types. Common parameters : Parameters that all Query operations can use. Common errors : Client and server errors that all operations can return. If you're new to Amazon AppFlow, we recommend that you review the Amazon AppFlow User Guide. Amazon AppFlow API users can use vendor-specific mechanisms for OAuth, and include applicable OAuth attributes (such as auth-code and redirecturi) with the connector-specific ConnectorProfileProperties when creating a new connector profile using Amazon AppFlow API operations. For example, Salesforce users can refer to the Authorize Apps with OAuth documentation.

AWS CloudTrail

CloudTrail This is the CloudTrail API Reference. It provides descriptions of actions, data types, common parameters, and common errors for CloudTrail. CloudTrail is a web service that records Amazon Web Services API calls for your Amazon Web Services account and delivers log files to an Amazon S3 bucket. The recorded information includes the identity of the user, the start time of the Amazon Web Services API call, the source IP address, the request parameters, and the response elements returned by the service. As an alternative to the API, you can use one of the Amazon Web Services SDKs, which consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .NET, iOS, Android, etc.). The SDKs provide programmatic access to CloudTrail. For example, the SDKs handle cryptographically signing requests, managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools to Build on Amazon Web Services. See the CloudTrail User Guide for information about the data that is included with each Amazon Web Services API call listed in the log files.

AWS Data Exchange

AWS Data Exchange is a service that makes it easy for AWS customers to exchange data in the cloud. You can use the AWS Data Exchange APIs to create, update, manage, and access file-based data set in the AWS Cloud. As a subscriber, you can view and access the data sets that you have an entitlement to through a subscription. You can use the APIS to download or copy your entitled data sets to Amazon S3 for use across a variety of AWS analytics and machine learning services. As a provider, you can create and manage your data sets that you would like to publish to a product. Being able to package and provide your data sets into products requires a few steps to determine eligibility. For more information, visit the AWS Data Exchange User Guide. A data set is a collection of data that can be changed or updated over time. Data sets can be updated using revisions, which represent a new version or incremental change to a data set. A revision contains one or more assets. An asset in AWS Data Exchange is a piece of data that can be stored as an Amazon S3 object. The asset can be a structured data file, an image file, or some other data file. Jobs are asynchronous import or export operations used to create or copy assets.

Amazon CloudDirectory

Amazon Cloud Directory Amazon Cloud Directory is a component of the AWS Directory Service that simplifies the development and management of cloud-scale web, mobile, and IoT applications. This guide describes the Cloud Directory operations that you can call programmatically and includes detailed information on data types and errors. For information about Cloud Directory features, see AWS Directory Service and the Amazon Cloud Directory Developer Guide.

Amazon SimpleDB

Amazon SimpleDB is a web service providing the core database functions of data indexing and querying in the cloud. By offloading the time and effort associated with building and operating a web-scale database, SimpleDB provides developers the freedom to focus on application development. A traditional, clustered relational database requires a sizable upfront capital outlay, is complex to design, and often requires extensive and repetitive database administration. Amazon SimpleDB is dramatically simpler, requiring no schema, automatically indexing your data and providing a simple API for storage and access. This approach eliminates the administrative burden of data modeling, index maintenance, and performance tuning. Developers gain access to this functionality within Amazon's proven computing environment, are able to scale instantly, and pay only for what they use. Visit http://aws.amazon.com/simpledb/ for more information.

Amazon Kinesis Analytics

Amazon Kinesis Analytics Overview This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which only supports SQL applications. Version 2 of the API supports SQL and Java applications. For more information about version 2, see Amazon Kinesis Data Analytics API V2 Documentation. This is the Amazon Kinesis Analytics v1 API Reference. The Amazon Kinesis Analytics Developer Guide provides additional information.

Other APIs in the same category

AutomationManagement

azure.com

Azure Maps Resource Provider

azure.com
Resource Provider

ComputeManagementClient

azure.com
The Compute Management Client.

CognitiveServicesManagementClient

azure.com
Cognitive Services Management Client

StreamAnalyticsManagementClient

azure.com

Cosmos DB

azure.com
Azure Cosmos DB Database Service Resource Provider REST API

QnAMaker Runtime Client

azure.com
An API for QnAMaker runtime

DataLakeStoreFileSystemManagementClient

azure.com
Creates an Azure Data Lake Store filesystem client.

DatabricksClient

azure.com
ARM Databricks

ContainerRegistryManagementClient

azure.com

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

RunCommandsClient

azure.com
The Run Commands Client.