Mock sample for your project: AWS IoT Greengrass V2 API

Integrate with "AWS IoT Greengrass V2 API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS IoT Greengrass V2

amazonaws.com

Version: 2020-11-30


Use this API in your project

Speed up your application development by using "AWS IoT Greengrass V2 API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and allow you to stop relying on an external API to get the job done. No more API keys to provision, accesses to configure or unplanned downtime, just work.
Enhance your development infrastructure by mocking third party APIs during integrating testing.

Description

IoT Greengrass brings local compute, messaging, data management, sync, and ML inference capabilities to edge devices. This enables devices to collect and analyze data closer to the source of information, react autonomously to local events, and communicate securely with each other on local networks. Local devices can also communicate securely with Amazon Web Services IoT Core and export IoT data to the Amazon Web Services Cloud. IoT Greengrass developers can use Lambda functions and components to create and deploy applications to fleets of edge devices for local operation. IoT Greengrass Version 2 provides a new major version of the IoT Greengrass Core software, new APIs, and a new console. Use this API reference to learn how to use the IoT Greengrass V2 API operations to manage components, manage deployments, and core devices. For more information, see What is IoT Greengrass? in the IoT Greengrass V2 Developer Guide.

Other APIs by amazonaws.com

Amazon Pinpoint Email Service

Amazon Pinpoint Email Service Welcome to the Amazon Pinpoint Email API Reference. This guide provides information about the Amazon Pinpoint Email API (version 1.0), including supported operations, data types, parameters, and schemas. Amazon Pinpoint is an AWS service that you can use to engage with your customers across multiple messaging channels. You can use Amazon Pinpoint to send email, SMS text messages, voice messages, and push notifications. The Amazon Pinpoint Email API provides programmatic access to options that are unique to the email channel and supplement the options provided by the Amazon Pinpoint API. If you're new to Amazon Pinpoint, you might find it helpful to also review the Amazon Pinpoint Developer Guide. The Amazon Pinpoint Developer Guide provides tutorials, code samples, and procedures that demonstrate how to use Amazon Pinpoint features programmatically and how to integrate Amazon Pinpoint functionality into mobile apps and other types of applications. The guide also provides information about key topics such as Amazon Pinpoint integration with other AWS services and the limits that apply to using the service. The Amazon Pinpoint Email API is available in several AWS Regions and it provides an endpoint for each of these Regions. For a list of all the Regions and endpoints where the API is currently available, see AWS Service Endpoints in the Amazon Web Services General Reference. To learn more about AWS Regions, see Managing AWS Regions in the Amazon Web Services General Reference. In each Region, AWS maintains multiple Availability Zones. These Availability Zones are physically isolated from each other, but are united by private, low-latency, high-throughput, and highly redundant network connections. These Availability Zones enable us to provide very high levels of availability and redundancy, while also minimizing latency. To learn more about the number of Availability Zones that are available in each Region, see AWS Global Infrastructure.

AWS AppSync

AppSync provides API actions for creating and interacting with data sources using GraphQL from your application.

AWS Global Accelerator

AWS Global Accelerator This is the AWS Global Accelerator API Reference. This guide is for developers who need detailed information about AWS Global Accelerator API actions, data types, and errors. For more information about Global Accelerator features, see the AWS Global Accelerator Developer Guide. AWS Global Accelerator is a service in which you create accelerators to improve the performance of your applications for local and global users. Depending on the type of accelerator you choose, you can gain additional benefits. By using a standard accelerator, you can improve availability of your internet applications that are used by a global audience. With a standard accelerator, Global Accelerator directs traffic to optimal endpoints over the AWS global network. For other scenarios, you might choose a custom routing accelerator. With a custom routing accelerator, you can use application logic to directly map one or more users to a specific endpoint among many endpoints. Global Accelerator is a global service that supports endpoints in multiple AWS Regions but you must specify the US West (Oregon) Region to create or update accelerators. By default, Global Accelerator provides you with two static IP addresses that you associate with your accelerator. With a standard accelerator, instead of using the IP addresses that Global Accelerator provides, you can configure these entry points to be IPv4 addresses from your own IP address ranges that you bring to Global Accelerator. The static IP addresses are anycast from the AWS edge network. For a standard accelerator, they distribute incoming application traffic across multiple endpoint resources in multiple AWS Regions, which increases the availability of your applications. Endpoints for standard accelerators can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses that are located in one AWS Region or multiple Regions. For custom routing accelerators, you map traffic that arrives to the static IP addresses to specific Amazon EC2 servers in endpoints that are virtual private cloud (VPC) subnets. The static IP addresses remain assigned to your accelerator for as long as it exists, even if you disable the accelerator and it no longer accepts or routes traffic. However, when you delete an accelerator, you lose the static IP addresses that are assigned to it, so you can no longer route traffic by using them. You can use IAM policies like tag-based permissions with Global Accelerator to limit the users who have permissions to delete an accelerator. For more information, see Tag-based policies. For standard accelerators, Global Accelerator uses the AWS global network to route traffic to the optimal regional endpoint based on health, client location, and policies that you configure. The service reacts instantly to changes in health or configuration to ensure that internet traffic from clients is always directed to healthy endpoints. For a list of the AWS Regions where Global Accelerator and other services are currently supported, see the AWS Region Table. AWS Global Accelerator includes the following components: Static IP addresses Global Accelerator provides you with a set of two static IP addresses that are anycast from the AWS edge network. If you bring your own IP address range to AWS (BYOIP) to use with a standard accelerator, you can instead assign IP addresses from your own pool to use with your accelerator. For more information, see Bring your own IP addresses (BYOIP) in AWS Global Accelerator. The IP addresses serve as single fixed entry points for your clients. If you already have Elastic Load Balancing load balancers, Amazon EC2 instances, or Elastic IP address resources set up for your applications, you can easily add those to a standard accelerator in Global Accelerator. This allows Global Accelerator to use static IP addresses to access the resources. The static IP addresses remain assigned to your accelerator for as long as it exists, even if you disable the accelerator and it no longer accepts or routes traffic. However, when you delete an accelerator, you lose the static IP addresses that are assigned to it, so you can no longer route traffic by using them. You can use IAM policies like tag-based permissions with Global Accelerator to delete an accelerator. For more information, see Tag-based policies. Accelerator An accelerator directs traffic to endpoints over the AWS global network to improve the performance of your internet applications. Each accelerator includes one or more listeners. There are two types of accelerators: A standard accelerator directs traffic to the optimal AWS endpoint based on several factors, including the user’s location, the health of the endpoint, and the endpoint weights that you configure. This improves the availability and performance of your applications. Endpoints can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses. A custom routing accelerator directs traffic to one of possibly thousands of Amazon EC2 instances running in a single or multiple virtual private clouds (VPCs). With custom routing, listener ports are mapped to statically associate port ranges with VPC subnets, which allows Global Accelerator to determine an EC2 instance IP address at the time of connection. By default, all port mapping destinations in a VPC subnet can't receive traffic. You can choose to configure all destinations in the subnet to receive traffic, or to specify individual port mappings that can receive traffic. For more information, see Types of accelerators. DNS name Global Accelerator assigns each accelerator a default Domain Name System (DNS) name, similar to a1234567890abcdef.awsglobalaccelerator.com, that points to the static IP addresses that Global Accelerator assigns to you or that you choose from your own IP address range. Depending on the use case, you can use your accelerator's static IP addresses or DNS name to route traffic to your accelerator, or set up DNS records to route traffic using your own custom domain name. Network zone A network zone services the static IP addresses for your accelerator from a unique IP subnet. Similar to an AWS Availability Zone, a network zone is an isolated unit with its own set of physical infrastructure. When you configure an accelerator, by default, Global Accelerator allocates two IPv4 addresses for it. If one IP address from a network zone becomes unavailable due to IP address blocking by certain client networks, or network disruptions, then client applications can retry on the healthy static IP address from the other isolated network zone. Listener A listener processes inbound connections from clients to Global Accelerator, based on the port (or port range) and protocol (or protocols) that you configure. A listener can be configured for TCP, UDP, or both TCP and UDP protocols. Each listener has one or more endpoint groups associated with it, and traffic is forwarded to endpoints in one of the groups. You associate endpoint groups with listeners by specifying the Regions that you want to distribute traffic to. With a standard accelerator, traffic is distributed to optimal endpoints within the endpoint groups associated with a listener. Endpoint group Each endpoint group is associated with a specific AWS Region. Endpoint groups include one or more endpoints in the Region. With a standard accelerator, you can increase or reduce the percentage of traffic that would be otherwise directed to an endpoint group by adjusting a setting called a traffic dial. The traffic dial lets you easily do performance testing or blue/green deployment testing, for example, for new releases across different AWS Regions. Endpoint An endpoint is a resource that Global Accelerator directs traffic to. Endpoints for standard accelerators can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses. An Application Load Balancer endpoint can be internet-facing or internal. Traffic for standard accelerators is routed to endpoints based on the health of the endpoint along with configuration options that you choose, such as endpoint weights. For each endpoint, you can configure weights, which are numbers that you can use to specify the proportion of traffic to route to each one. This can be useful, for example, to do performance testing within a Region. Endpoints for custom routing accelerators are virtual private cloud (VPC) subnets with one or many EC2 instances.

AWS Cloud9

Cloud9 Cloud9 is a collection of tools that you can use to code, build, run, test, debug, and release software in the cloud. For more information about Cloud9, see the Cloud9 User Guide. Cloud9 supports these operations: CreateEnvironmentEC2 : Creates an Cloud9 development environment, launches an Amazon EC2 instance, and then connects from the instance to the environment. CreateEnvironmentMembership : Adds an environment member to an environment. DeleteEnvironment : Deletes an environment. If an Amazon EC2 instance is connected to the environment, also terminates the instance. DeleteEnvironmentMembership : Deletes an environment member from an environment. DescribeEnvironmentMemberships : Gets information about environment members for an environment. DescribeEnvironments : Gets information about environments. DescribeEnvironmentStatus : Gets status information for an environment. ListEnvironments : Gets a list of environment identifiers. ListTagsForResource : Gets the tags for an environment. TagResource : Adds tags to an environment. UntagResource : Removes tags from an environment. UpdateEnvironment : Changes the settings of an existing environment. UpdateEnvironmentMembership : Changes the settings of an existing environment member for an environment.

AWS CodeCommit

AWS CodeCommit This is the AWS CodeCommit API Reference. This reference provides descriptions of the operations and data types for AWS CodeCommit API along with usage examples. You can use the AWS CodeCommit API to work with the following objects: Repositories, by calling the following: BatchGetRepositories, which returns information about one or more repositories associated with your AWS account. CreateRepository, which creates an AWS CodeCommit repository. DeleteRepository, which deletes an AWS CodeCommit repository. GetRepository, which returns information about a specified repository. ListRepositories, which lists all AWS CodeCommit repositories associated with your AWS account. UpdateRepositoryDescription, which sets or updates the description of the repository. UpdateRepositoryName, which changes the name of the repository. If you change the name of a repository, no other users of that repository can access it until you send them the new HTTPS or SSH URL to use. Branches, by calling the following: CreateBranch, which creates a branch in a specified repository. DeleteBranch, which deletes the specified branch in a repository unless it is the default branch. GetBranch, which returns information about a specified branch. ListBranches, which lists all branches for a specified repository. UpdateDefaultBranch, which changes the default branch for a repository. Files, by calling the following: DeleteFile, which deletes the content of a specified file from a specified branch. GetBlob, which returns the base-64 encoded content of an individual Git blob object in a repository. GetFile, which returns the base-64 encoded content of a specified file. GetFolder, which returns the contents of a specified folder or directory. PutFile, which adds or modifies a single file in a specified repository and branch. Commits, by calling the following: BatchGetCommits, which returns information about one or more commits in a repository. CreateCommit, which creates a commit for changes to a repository. GetCommit, which returns information about a commit, including commit messages and author and committer information. GetDifferences, which returns information about the differences in a valid commit specifier (such as a branch, tag, HEAD, commit ID, or other fully qualified reference). Merges, by calling the following: BatchDescribeMergeConflicts, which returns information about conflicts in a merge between commits in a repository. CreateUnreferencedMergeCommit, which creates an unreferenced commit between two branches or commits for the purpose of comparing them and identifying any potential conflicts. DescribeMergeConflicts, which returns information about merge conflicts between the base, source, and destination versions of a file in a potential merge. GetMergeCommit, which returns information about the merge between a source and destination commit. GetMergeConflicts, which returns information about merge conflicts between the source and destination branch in a pull request. GetMergeOptions, which returns information about the available merge options between two branches or commit specifiers. MergeBranchesByFastForward, which merges two branches using the fast-forward merge option. MergeBranchesBySquash, which merges two branches using the squash merge option. MergeBranchesByThreeWay, which merges two branches using the three-way merge option. Pull requests, by calling the following: CreatePullRequest, which creates a pull request in a specified repository. CreatePullRequestApprovalRule, which creates an approval rule for a specified pull request. DeletePullRequestApprovalRule, which deletes an approval rule for a specified pull request. DescribePullRequestEvents, which returns information about one or more pull request events. EvaluatePullRequestApprovalRules, which evaluates whether a pull request has met all the conditions specified in its associated approval rules. GetCommentsForPullRequest, which returns information about comments on a specified pull request. GetPullRequest, which returns information about a specified pull request. GetPullRequestApprovalStates, which returns information about the approval states for a specified pull request. GetPullRequestOverrideState, which returns information about whether approval rules have been set aside (overriden) for a pull request, and if so, the Amazon Resource Name (ARN) of the user or identity that overrode the rules and their requirements for the pull request. ListPullRequests, which lists all pull requests for a repository. MergePullRequestByFastForward, which merges the source destination branch of a pull request into the specified destination branch for that pull request using the fast-forward merge option. MergePullRequestBySquash, which merges the source destination branch of a pull request into the specified destination branch for that pull request using the squash merge option. MergePullRequestByThreeWay. which merges the source destination branch of a pull request into the specified destination branch for that pull request using the three-way merge option. OverridePullRequestApprovalRules, which sets aside all approval rule requirements for a pull request. PostCommentForPullRequest, which posts a comment to a pull request at the specified line, file, or request. UpdatePullRequestApprovalRuleContent, which updates the structure of an approval rule for a pull request. UpdatePullRequestApprovalState, which updates the state of an approval on a pull request. UpdatePullRequestDescription, which updates the description of a pull request. UpdatePullRequestStatus, which updates the status of a pull request. UpdatePullRequestTitle, which updates the title of a pull request. Approval rule templates, by calling the following: AssociateApprovalRuleTemplateWithRepository, which associates a template with a specified repository. After the template is associated with a repository, AWS CodeCommit creates approval rules that match the template conditions on every pull request created in the specified repository. BatchAssociateApprovalRuleTemplateWithRepositories, which associates a template with one or more specified repositories. After the template is associated with a repository, AWS CodeCommit creates approval rules that match the template conditions on every pull request created in the specified repositories. BatchDisassociateApprovalRuleTemplateFromRepositories, which removes the association between a template and specified repositories so that approval rules based on the template are not automatically created when pull requests are created in those repositories. CreateApprovalRuleTemplate, which creates a template for approval rules that can then be associated with one or more repositories in your AWS account. DeleteApprovalRuleTemplate, which deletes the specified template. It does not remove approval rules on pull requests already created with the template. DisassociateApprovalRuleTemplateFromRepository, which removes the association between a template and a repository so that approval rules based on the template are not automatically created when pull requests are created in the specified repository. GetApprovalRuleTemplate, which returns information about an approval rule template. ListApprovalRuleTemplates, which lists all approval rule templates in the AWS Region in your AWS account. ListAssociatedApprovalRuleTemplatesForRepository, which lists all approval rule templates that are associated with a specified repository. ListRepositoriesForApprovalRuleTemplate, which lists all repositories associated with the specified approval rule template. UpdateApprovalRuleTemplateDescription, which updates the description of an approval rule template. UpdateApprovalRuleTemplateName, which updates the name of an approval rule template. UpdateApprovalRuleTemplateContent, which updates the content of an approval rule template. Comments in a repository, by calling the following: DeleteCommentContent, which deletes the content of a comment on a commit in a repository. GetComment, which returns information about a comment on a commit. GetCommentReactions, which returns information about emoji reactions to comments. GetCommentsForComparedCommit, which returns information about comments on the comparison between two commit specifiers in a repository. PostCommentForComparedCommit, which creates a comment on the comparison between two commit specifiers in a repository. PostCommentReply, which creates a reply to a comment. PutCommentReaction, which creates or updates an emoji reaction to a comment. UpdateComment, which updates the content of a comment on a commit in a repository. Tags used to tag resources in AWS CodeCommit (not Git tags), by calling the following: ListTagsForResource, which gets information about AWS tags for a specified Amazon Resource Name (ARN) in AWS CodeCommit. TagResource, which adds or updates tags for a resource in AWS CodeCommit. UntagResource, which removes tags for a resource in AWS CodeCommit. Triggers, by calling the following: GetRepositoryTriggers, which returns information about triggers configured for a repository. PutRepositoryTriggers, which replaces all triggers for a repository and can be used to create or delete triggers. TestRepositoryTriggers, which tests the functionality of a repository trigger by sending data to the trigger target. For information about how to use AWS CodeCommit, see the AWS CodeCommit User Guide.

Amazon Elastic File System

Amazon Elastic File System Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use with Amazon EC2 instances in the Amazon Web Services Cloud. With Amazon EFS, storage capacity is elastic, growing and shrinking automatically as you add and remove files, so your applications have the storage they need, when they need it. For more information, see the Amazon Elastic File System API Reference and the Amazon Elastic File System User Guide.

Amazon Data Lifecycle Manager

Amazon Data Lifecycle Manager With Amazon Data Lifecycle Manager, you can manage the lifecycle of your Amazon Web Services resources. You create lifecycle policies, which are used to automate operations on the specified resources. Amazon DLM supports Amazon EBS volumes and snapshots. For information about using Amazon DLM with Amazon EBS, see Automating the Amazon EBS Snapshot Lifecycle in the Amazon EC2 User Guide.

AWS Data Exchange

AWS Data Exchange is a service that makes it easy for AWS customers to exchange data in the cloud. You can use the AWS Data Exchange APIs to create, update, manage, and access file-based data set in the AWS Cloud. As a subscriber, you can view and access the data sets that you have an entitlement to through a subscription. You can use the APIS to download or copy your entitled data sets to Amazon S3 for use across a variety of AWS analytics and machine learning services. As a provider, you can create and manage your data sets that you would like to publish to a product. Being able to package and provide your data sets into products requires a few steps to determine eligibility. For more information, visit the AWS Data Exchange User Guide. A data set is a collection of data that can be changed or updated over time. Data sets can be updated using revisions, which represent a new version or incremental change to a data set. A revision contains one or more assets. An asset in AWS Data Exchange is a piece of data that can be stored as an Amazon S3 object. The asset can be a structured data file, an image file, or some other data file. Jobs are asynchronous import or export operations used to create or copy assets.

Amazon EMR Containers

Amazon EMR on EKS provides a deployment option for Amazon EMR that allows you to run open-source big data frameworks on Amazon Elastic Kubernetes Service (Amazon EKS). With this deployment option, you can focus on running analytics workloads while Amazon EMR on EKS builds, configures, and manages containers for open-source applications. For more information about Amazon EMR on EKS concepts and tasks, see What is Amazon EMR on EKS. Amazon EMR containers is the API name for Amazon EMR on EKS. The emr-containers prefix is used in the following scenarios: It is the prefix in the CLI commands for Amazon EMR on EKS. For example, aws emr-containers start-job-run. It is the prefix before IAM policy actions for Amazon EMR on EKS. For example,"Action": [ "emr-containers:StartJobRun"]. For more information, see Policy actions for Amazon EMR on EKS. It is the prefix used in Amazon EMR on EKS service endpoints. For example, emr-containers.us-east-2.amazonaws.com. For more information, see Amazon EMR on EKS Service Endpoints.

Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud Amazon Elastic Compute Cloud (Amazon EC2) provides secure and resizable computing capacity in the AWS Cloud. Using Amazon EC2 eliminates the need to invest in hardware up front, so you can develop and deploy applications faster. Amazon Virtual Private Cloud (Amazon VPC) enables you to provision a logically isolated section of the AWS Cloud where you can launch AWS resources in a virtual network that you've defined. Amazon Elastic Block Store (Amazon EBS) provides block level storage volumes for use with EC2 instances. EBS volumes are highly available and reliable storage volumes that can be attached to any running instance and used like a hard drive. To learn more, see the following resources: Amazon EC2: AmazonEC2 product page, Amazon EC2 documentation Amazon EBS: Amazon EBS product page, Amazon EBS documentation Amazon VPC: Amazon VPC product page, Amazon VPC documentation AWS VPN: AWS VPN product page, AWS VPN documentation

Amazon EC2 Container Service

Amazon Elastic Container Service Amazon Elastic Container Service (Amazon ECS) is a highly scalable, fast, container management service that makes it easy to run, stop, and manage Docker containers on a cluster. You can host your cluster on a serverless infrastructure that is managed by Amazon ECS by launching your services or tasks on Fargate. For more control, you can host your tasks on a cluster of Amazon Elastic Compute Cloud (Amazon EC2) instances that you manage. Amazon ECS makes it easy to launch and stop container-based applications with simple API calls, allows you to get the state of your cluster from a centralized service, and gives you access to many familiar Amazon EC2 features. You can use Amazon ECS to schedule the placement of containers across your cluster based on your resource needs, isolation policies, and availability requirements. Amazon ECS eliminates the need for you to operate your own cluster management and configuration management systems or worry about scaling your management infrastructure.

AWS Database Migration Service

Database Migration Service Database Migration Service (DMS) can migrate your data to and from the most widely used commercial and open-source databases such as Oracle, PostgreSQL, Microsoft SQL Server, Amazon Redshift, MariaDB, Amazon Aurora, MySQL, and SAP Adaptive Server Enterprise (ASE). The service supports homogeneous migrations such as Oracle to Oracle, as well as heterogeneous migrations between different database platforms, such as Oracle to MySQL or SQL Server to PostgreSQL. For more information about DMS, see What Is Database Migration Service? in the Database Migration Service User Guide.

Other APIs in the same category

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Group entity in your Azure API Management deployment. Groups are used to manage the visibility of products to developers. Each API Management service instance comes with the following immutable system groups whose membership is automatically managed by API Management. - Administrators - Azure subscription administrators are members of this group. - Developers - Authenticated developer portal users fall into this group. - Guests - Unauthenticated developer portal users are placed into this group. In addition to these system groups, administrators can create custom groups or leverage external groups in associated Azure Active Directory tenants. Custom and external groups can be used alongside system groups in giving developers visibility and access to API products. For example, you could create one custom group for developers affiliated with a specific partner organization and allow them access to the APIs from a product containing relevant APIs only. A user can be a member of more than one group.

ResourceHealthMetadata API Client

azure.com

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for Annotations for a component.

AutomationManagementClient

azure.com

Amazon S3 on Outposts

Amazon S3 on Outposts provides access to S3 on Outposts operations.

ApiManagementClient

azure.com
Use these REST APIs to get the analytics reports associated with your Azure API Management deployment.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on logger entity Azure API Management deployment.The Logger entity in API Management represents an event sink that you can use to log API Management events. Currently the Logger entity supports logging API Management events to Azure EventHub.

Amazon Simple Notification Service

Amazon Simple Notification Service Amazon Simple Notification Service (Amazon SNS) is a web service that enables you to build distributed web-enabled applications. Applications can use Amazon SNS to easily push real-time notification messages to interested subscribers over multiple delivery protocols. For more information about this product see the Amazon SNS product page. For detailed information about Amazon SNS features and their associated API calls, see the Amazon SNS Developer Guide. For information on the permissions you need to use this API, see Identity and access management in Amazon SNS in the Amazon SNS Developer Guide. We also provide SDKs that enable you to access Amazon SNS from your preferred programming language. The SDKs contain functionality that automatically takes care of tasks such as: cryptographically signing your service requests, retrying requests, and handling error responses. For a list of available SDKs, go to Tools for Amazon Web Services.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Cache entity in your Azure API Management deployment. Azure API Management also allows for caching responses in an external Azure Cache for Redis. For more information refer to External Redis Cache in ApiManagement.

Amazon AppConfig

AWS AppConfig Use AWS AppConfig, a capability of AWS Systems Manager, to create, manage, and quickly deploy application configurations. AppConfig supports controlled deployments to applications of any size and includes built-in validation checks and monitoring. You can use AppConfig with applications hosted on Amazon EC2 instances, AWS Lambda, containers, mobile applications, or IoT devices. To prevent errors when deploying application configurations, especially for production systems where a simple typo could cause an unexpected outage, AppConfig includes validators. A validator provides a syntactic or semantic check to ensure that the configuration you want to deploy works as intended. To validate your application configuration data, you provide a schema or a Lambda function that runs against the configuration. The configuration deployment or update can only proceed when the configuration data is valid. During a configuration deployment, AppConfig monitors the application to ensure that the deployment is successful. If the system encounters an error, AppConfig rolls back the change to minimize impact for your application users. You can configure a deployment strategy for each application or environment that includes deployment criteria, including velocity, bake time, and alarms to monitor. Similar to error monitoring, if a deployment triggers an alarm, AppConfig automatically rolls back to the previous version. AppConfig supports multiple use cases. Here are some examples. Application tuning : Use AppConfig to carefully introduce changes to your application that can only be tested with production traffic. Feature toggle : Use AppConfig to turn on new features that require a timely deployment, such as a product launch or announcement. Allow list : Use AppConfig to allow premium subscribers to access paid content. Operational issues : Use AppConfig to reduce stress on your application when a dependency or other external factor impacts the system. This reference is intended to be used with the AWS AppConfig User Guide.

AWS CodeDeploy

AWS CodeDeploy AWS CodeDeploy is a deployment service that automates application deployments to Amazon EC2 instances, on-premises instances running in your own facility, serverless AWS Lambda functions, or applications in an Amazon ECS service. You can deploy a nearly unlimited variety of application content, such as an updated Lambda function, updated applications in an Amazon ECS service, code, web and configuration files, executables, packages, scripts, multimedia files, and so on. AWS CodeDeploy can deploy application content stored in Amazon S3 buckets, GitHub repositories, or Bitbucket repositories. You do not need to make changes to your existing code before you can use AWS CodeDeploy. AWS CodeDeploy makes it easier for you to rapidly release new features, helps you avoid downtime during application deployment, and handles the complexity of updating your applications, without many of the risks associated with error-prone manual deployments. AWS CodeDeploy Components Use the information in this guide to help you work with the following AWS CodeDeploy components: Application : A name that uniquely identifies the application you want to deploy. AWS CodeDeploy uses this name, which functions as a container, to ensure the correct combination of revision, deployment configuration, and deployment group are referenced during a deployment. Deployment group : A set of individual instances, CodeDeploy Lambda deployment configuration settings, or an Amazon ECS service and network details. A Lambda deployment group specifies how to route traffic to a new version of a Lambda function. An Amazon ECS deployment group specifies the service created in Amazon ECS to deploy, a load balancer, and a listener to reroute production traffic to an updated containerized application. An EC2/On-premises deployment group contains individually tagged instances, Amazon EC2 instances in Amazon EC2 Auto Scaling groups, or both. All deployment groups can specify optional trigger, alarm, and rollback settings. Deployment configuration : A set of deployment rules and deployment success and failure conditions used by AWS CodeDeploy during a deployment. Deployment : The process and the components used when updating a Lambda function, a containerized application in an Amazon ECS service, or of installing content on one or more instances. Application revisions : For an AWS Lambda deployment, this is an AppSpec file that specifies the Lambda function to be updated and one or more functions to validate deployment lifecycle events. For an Amazon ECS deployment, this is an AppSpec file that specifies the Amazon ECS task definition, container, and port where production traffic is rerouted. For an EC2/On-premises deployment, this is an archive file that contains source content—source code, webpages, executable files, and deployment scripts—along with an AppSpec file. Revisions are stored in Amazon S3 buckets or GitHub repositories. For Amazon S3, a revision is uniquely identified by its Amazon S3 object key and its ETag, version, or both. For GitHub, a revision is uniquely identified by its commit ID. This guide also contains information to help you get details about the instances in your deployments, to make on-premises instances available for AWS CodeDeploy deployments, to get details about a Lambda function deployment, and to get details about Amazon ECS service deployments. AWS CodeDeploy Information Resources AWS CodeDeploy User Guide AWS CodeDeploy API Reference Guide AWS CLI Reference for AWS CodeDeploy AWS CodeDeploy Developer Forum