Mock sample for your project: Guest Diagnostic Settings API

Integrate with "Guest Diagnostic Settings API" from in no time with Mockoon's ready to use mock sample

Guest Diagnostic Settings

Version: 2018-06-01-preview

Use this API in your project

Speed up your application development by using "Guest Diagnostic Settings API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and allow you to stop relying on an external API to get the job done. No more API keys to provision, accesses to configure or unplanned downtime, just work.
Enhance your development infrastructure by mocking third party APIs during integrating testing.


API to Add/Remove/List Guest Diagnostics Configuration to Azure Resources

Other APIs by

LUIS Authoring Client

Security Center
API spec for Microsoft.Security (Azure Security Center) resource provider

The HDInsight Management Client.

Anomaly Detector Client
The Anomaly Detector API detects anomalies automatically in time series data. It supports two kinds of mode, one is for stateless using, another is for stateful using. In stateless mode, there are three functionalities. Entire Detect is for detecting the whole series with model trained by the time series, Last Detect is detecting last point with model trained by points before. ChangePoint Detect is for detecting trend changes in time series. In stateful mode, user can store time series, the stored time series will be used for detection anomalies. Under this mode, user can still use the above three functionalities by only giving a time range without preparing time series in client side. Besides the above three functionalities, stateful model also provide group based detection and labeling service. By leveraging labeling service user can provide labels for each detection result, these labels will be used for retuning or regenerating detection models. Inconsistency detection is a kind of group based detection, this detection will find inconsistency ones in a set of time series. By using anomaly detector service, business customers can discover incidents and establish a logic flow for root cause analysis.

The Microsoft Azure management API provides create, read, update, and delete functionality for Azure MariaDB resources including servers, databases, firewall rules, VNET rules, security alert policies, log files and configurations with new business model.

Use these REST APIs for performing operations on OpenId Connect Provider entity associated with your Azure API Management deployment. API Management allows you to access APIs secured with token from OpenID Connect Provider to be accessed from the Developer Console.

The Admin Storage Management Client.

Update Management
APIs for managing software update configurations.

Azure Blueprints Client provides access to blueprint definitions, assignments, and artifacts, and related blueprint operations.

Azure Media Services
This Swagger was generated by the API Framework.

The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.


Other APIs in the same category

The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

Role based access control provides you a way to apply granular level policy administration down to individual resources or resource groups. These operations enable you to manage role definitions and role assignments. A role definition describes the set of actions that can be performed on resources. A role assignment grants access to Azure Active Directory users.

AWS Network Manager

Transit Gateway Network Manager (Network Manager) enables you to create a global network, in which you can monitor your AWS and on-premises networks that are built around transit gateways. The Network Manager APIs are supported in the US West (Oregon) Region only. You must specify the us-west-2 Region in all requests made to Network Manager.

Amazon Pinpoint SMS and Voice Service

Pinpoint SMS and Voice Messaging public facing APIs

AWS Resource Groups

AWS Resource Groups AWS Resource Groups lets you organize AWS resources such as Amazon EC2 instances, Amazon Relational Database Service databases, and Amazon S3 buckets into groups using criteria that you define as tags. A resource group is a collection of resources that match the resource types specified in a query, and share one or more tags or portions of tags. You can create a group of resources based on their roles in your cloud infrastructure, lifecycle stages, regions, application layers, or virtually any criteria. Resource Groups enable you to automate management tasks, such as those in AWS Systems Manager Automation documents, on tag-related resources in AWS Systems Manager. Groups of tagged resources also let you quickly view a custom console in AWS Systems Manager that shows AWS Config compliance and other monitoring data about member resources. To create a resource group, build a resource query, and specify tags that identify the criteria that members of the group have in common. Tags are key-value pairs. For more information about Resource Groups, see the AWS Resource Groups User Guide. AWS Resource Groups uses a REST-compliant API that you can use to perform the following types of operations. Create, Read, Update, and Delete (CRUD) operations on resource groups and resource query entities Applying, editing, and removing tags from resource groups Resolving resource group member ARNs so they can be returned as search results Getting data about resources that are members of a group Searching AWS resources based on a resource query

Amazon DynamoDB

Amazon DynamoDB Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with seamless scalability. DynamoDB lets you offload the administrative burdens of operating and scaling a distributed database, so that you don't have to worry about hardware provisioning, setup and configuration, replication, software patching, or cluster scaling. With DynamoDB, you can create database tables that can store and retrieve any amount of data, and serve any level of request traffic. You can scale up or scale down your tables' throughput capacity without downtime or performance degradation, and use the AWS Management Console to monitor resource utilization and performance metrics. DynamoDB automatically spreads the data and traffic for your tables over a sufficient number of servers to handle your throughput and storage requirements, while maintaining consistent and fast performance. All of your data is stored on solid state disks (SSDs) and automatically replicated across multiple Availability Zones in an AWS region, providing built-in high availability and data durability.
IoT IoT provides secure, bi-directional communication between Internet-connected devices (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. You can discover your custom IoT-Data endpoint to communicate with, configure rules for data processing and integration with other services, organize resources associated with each device (Registry), configure logging, and create and manage policies and credentials to authenticate devices. The service endpoints that expose this API are listed in Amazon Web Services IoT Core Endpoints and Quotas. You must use the endpoint for the region that has the resources you want to access. The service name used by Amazon Web Services Signature Version 4 to sign the request is: execute-api. For more information about how IoT works, see the Developer Guide. For information about how to use the credentials provider for IoT, see Authorizing Direct Calls to Amazon Web Services Services.

Amazon WorkMail Message Flow

The WorkMail Message Flow API provides access to email messages as they are being sent and received by a WorkMail organization.

AWS Batch

Batch Using Batch, you can run batch computing workloads on the Cloud. Batch computing is a common means for developers, scientists, and engineers to access large amounts of compute resources. Batch uses the advantages of this computing workload to remove the undifferentiated heavy lifting of configuring and managing required infrastructure. At the same time, it also adopts a familiar batch computing software approach. Given these advantages, Batch can help you to efficiently provision resources in response to jobs submitted, thus effectively helping you to eliminate capacity constraints, reduce compute costs, and deliver your results more quickly. As a fully managed service, Batch can run batch computing workloads of any scale. Batch automatically provisions compute resources and optimizes workload distribution based on the quantity and scale of your specific workloads. With Batch, there's no need to install or manage batch computing software. This means that you can focus your time and energy on analyzing results and solving your specific problems.

File share operation endpoints and objects.

Azure Addons Resource Provider
The service for managing third party addons.

Amazon Route 53 Resolver

When you create a VPC using Amazon VPC, you automatically get DNS resolution within the VPC from Route 53 Resolver. By default, Resolver answers DNS queries for VPC domain names such as domain names for EC2 instances or Elastic Load Balancing load balancers. Resolver performs recursive lookups against public name servers for all other domain names. You can also configure DNS resolution between your VPC and your network over a Direct Connect or VPN connection: Forward DNS queries from resolvers on your network to Route 53 Resolver DNS resolvers on your network can forward DNS queries to Resolver in a specified VPC. This allows your DNS resolvers to easily resolve domain names for Amazon Web Services resources such as EC2 instances or records in a Route 53 private hosted zone. For more information, see How DNS Resolvers on Your Network Forward DNS Queries to Route 53 Resolver in the Amazon Route 53 Developer Guide. Conditionally forward queries from a VPC to resolvers on your network You can configure Resolver to forward queries that it receives from EC2 instances in your VPCs to DNS resolvers on your network. To forward selected queries, you create Resolver rules that specify the domain names for the DNS queries that you want to forward (such as, and the IP addresses of the DNS resolvers on your network that you want to forward the queries to. If a query matches multiple rules (,, Resolver chooses the rule with the most specific match ( and forwards the query to the IP addresses that you specified in that rule. For more information, see How Route 53 Resolver Forwards DNS Queries from Your VPCs to Your Network in the Amazon Route 53 Developer Guide. Like Amazon VPC, Resolver is Regional. In each Region where you have VPCs, you can choose whether to forward queries from your VPCs to your network (outbound queries), from your network to your VPCs (inbound queries), or both.