Mock sample for your project: Azure Media Services API

Integrate with "Azure Media Services API" from azure.com in no time with Mockoon's ready to use mock sample

Azure Media Services

azure.com

Version: 2018-06-01-preview


Use this API in your project

Speed up your application development by using "Azure Media Services API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
It also improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

This Swagger was generated by the API Framework.

Other APIs by azure.com

Guest Diagnostic Settings Association

azure.com
API to Add/Remove/List Guest Diagnostics Settings Association for Azure Resources

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for saved items.

StorageManagementClient

azure.com
The Admin Storage Management Client.

QnAMaker Runtime Client

azure.com
An API for QnAMaker runtime

StorageManagementClient

azure.com
The Admin Storage Management Client.

ApplicationInsightsManagementClient

azure.com
Azure Application Insights workbook template type.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on the ApiVersionSet entity associated with your Azure API Management deployment. Using this entity you create and manage API Version Sets that are used to group APIs for consistent versioning.

CustomerInsightsManagementClient

azure.com
The Azure Customer Insights management API provides a RESTful set of web services that interact with Azure Customer Insights service to manage your resources. The API has entities that capture the relationship between an end user and the Azure Customer Insights service.

DataFactoryManagementClient

azure.com

Customer Lockbox

azure.com
Azure Customer Lockbox API Reference

Azure Machine Learning Model Management Service

azure.com
These APIs allow end users to manage Azure Machine Learning Models, Images, Profiles, and Services.

ContainerServiceClient

azure.com
The Container Service Client.

Other APIs in the same category

Clever-Cloud API

clever-cloud.com
Public API for managing Clever-Cloud data and products

Amazon Connect Contact Lens

Contact Lens for Amazon Connect enables you to analyze conversations between customer and agents, by using speech transcription, natural language processing, and intelligent search capabilities. It performs sentiment analysis, detects issues, and enables you to automatically categorize contacts. Contact Lens for Amazon Connect provides both real-time and post-call analytics of customer-agent conversations. For more information, see Analyze conversations using Contact Lens in the Amazon Connect Administrator Guide.

Managed Streaming for Kafka Connect

Amazon WorkLink

Amazon WorkLink is a cloud-based service that provides secure access to internal websites and web apps from iOS and Android phones. In a single step, your users, such as employees, can access internal websites as efficiently as they access any other public website. They enter a URL in their web browser, or choose a link to an internal website in an email. Amazon WorkLink authenticates the user's access and securely renders authorized internal web content in a secure rendering service in the AWS cloud. Amazon WorkLink doesn't download or store any internal web content on mobile devices.

Amazon Pinpoint SMS and Voice Service

Pinpoint SMS and Voice Messaging public facing APIs

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

Amazon Augmented AI Runtime

Amazon Augmented AI (Amazon A2I) adds the benefit of human judgment to any machine learning application. When an AI application can't evaluate data with a high degree of confidence, human reviewers can take over. This human review is called a human review workflow. To create and start a human review workflow, you need three resources: a worker task template, a flow definition, and a human loop. For information about these resources and prerequisites for using Amazon A2I, see Get Started with Amazon Augmented AI in the Amazon SageMaker Developer Guide. This API reference includes information about API actions and data types that you can use to interact with Amazon A2I programmatically. Use this guide to: Start a human loop with the StartHumanLoop operation when using Amazon A2I with a custom task type. To learn more about the difference between custom and built-in task types, see Use Task Types. To learn how to start a human loop using this API, see Create and Start a Human Loop for a Custom Task Type in the Amazon SageMaker Developer Guide. Manage your human loops. You can list all human loops that you have created, describe individual human loops, and stop and delete human loops. To learn more, see Monitor and Manage Your Human Loop in the Amazon SageMaker Developer Guide. Amazon A2I integrates APIs from various AWS services to create and start human review workflows for those services. To learn how Amazon A2I uses these APIs, see Use APIs in Amazon A2I in the Amazon SageMaker Developer Guide.

PostgreSQLManagementClient

azure.com
The Microsoft Azure management API provides create, read, update, and delete functionality for Azure PostgreSQL resources including servers, databases, firewall rules, VNET rules, security alert policies, log files and configurations with new business model.

HDInsightManagementClient

azure.com
The HDInsight Management Client.

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

Amazon Route 53 Domains

Amazon Route 53 API actions let you register domain names and perform related operations.