Mock sample for your project: MaintenanceManagementClient API

Integrate with "MaintenanceManagementClient API" from azure.com in no time with Mockoon's ready to use mock sample

MaintenanceManagementClient

azure.com

Version: 2018-06-01-preview


Use this API in your project

Start working with "MaintenanceManagementClient API" right away by using this ready-to-use mock sample. API mocking can greatly speed up your application development by removing all the tedious tasks or issues: API key provisioning, account creation, unplanned downtime, etc.
It also helps reduce your dependency on third-party APIs and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Azure Maintenance Management Client

Other APIs by azure.com

DeploymentAdminClient

azure.com
Deployment Admin Client.

StorageManagementClient

azure.com
The Admin Storage Management Client.

StorageManagementClient

azure.com
The Admin Storage Management Client.

BillingManagementClient

azure.com
Billing client provides access to billing resources for Azure subscriptions.

Update Management

azure.com
APIs for managing software update configurations.

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for ProactiveDetection configurations of a component.

CustomerInsightsManagementClient

azure.com
The Azure Customer Insights management API provides a RESTful set of web services that interact with Azure Customer Insights service to manage your resources. The API has entities that capture the relationship between an end user and the Azure Customer Insights service.

AppConfigurationManagementClient

azure.com

StorageManagementClient

azure.com
The Admin Storage Management Client.

AutomationManagement

azure.com

BatchManagement

azure.com

AutomationManagement

azure.com

Other APIs in the same category

Anomaly Detector Client

azure.com
The Anomaly Detector API detects anomalies automatically in time series data. It supports two kinds of mode, one is for stateless using, another is for stateful using. In stateless mode, there are three functionalities. Entire Detect is for detecting the whole series with model trained by the time series, Last Detect is detecting last point with model trained by points before. ChangePoint Detect is for detecting trend changes in time series. In stateful mode, user can store time series, the stored time series will be used for detection anomalies. Under this mode, user can still use the above three functionalities by only giving a time range without preparing time series in client side. Besides the above three functionalities, stateful model also provide group based detection and labeling service. By leveraging labeling service user can provide labels for each detection result, these labels will be used for retuning or regenerating detection models. Inconsistency detection is a kind of group based detection, this detection will find inconsistency ones in a set of time series. By using anomaly detector service, business customers can discover incidents and establish a logic flow for root cause analysis.

SqlManagementClient

azure.com
The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.

Marketplace RP Service

azure.com

Azure Migrate Hub

azure.com
Migrate your workloads to Azure.

AWS IoT 1-Click Projects Service

The AWS IoT 1-Click Projects API Reference

Azure Media Services

azure.com
This Swagger was generated by the API Framework.

Auto Scaling

Amazon EC2 Auto Scaling Amazon EC2 Auto Scaling is designed to automatically launch or terminate EC2 instances based on user-defined scaling policies, scheduled actions, and health checks. For more information about Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling User Guide. For information about granting IAM users required permissions for calls to Amazon EC2 Auto Scaling, see Granting IAM users required permissions for Amazon EC2 Auto Scaling resources in the Amazon EC2 Auto Scaling API Reference.

AWSServerlessApplicationRepository

The AWS Serverless Application Repository makes it easy for developers and enterprises to quickly find
and deploy serverless applications in the AWS Cloud. For more information about serverless applications,
see Serverless Computing and Applications on the AWS website. The AWS Serverless Application Repository is deeply integrated with the AWS Lambda console, so that developers of
all levels can get started with serverless computing without needing to learn anything new. You can use category
keywords to browse for applications such as web and mobile backends, data processing applications, or chatbots.
You can also search for applications by name, publisher, or event source. To use an application, you simply choose it,
configure any required fields, and deploy it with a few clicks. You can also easily publish applications, sharing them publicly with the community at large, or privately
within your team or across your organization. To publish a serverless application (or app), you can use the
AWS Management Console, AWS Command Line Interface (AWS CLI), or AWS SDKs to upload the code. Along with the
code, you upload a simple manifest file, also known as the AWS Serverless Application Model (AWS SAM) template.
For more information about AWS SAM, see AWS Serverless Application Model (AWS SAM) on the AWS Labs
GitHub repository. The AWS Serverless Application Repository Developer Guide contains more information about the two developer
experiences available:
Consuming Applications – Browse for applications and view information about them, including
source code and readme files. Also install, configure, and deploy applications of your choosing.
Publishing Applications – Configure and upload applications to make them available to other
developers, and publish new versions of applications.

AWS Marketplace Commerce Analytics

Provides AWS Marketplace business intelligence data on-demand.

Amazon Data Lifecycle Manager

Amazon Data Lifecycle Manager With Amazon Data Lifecycle Manager, you can manage the lifecycle of your Amazon Web Services resources. You create lifecycle policies, which are used to automate operations on the specified resources. Amazon DLM supports Amazon EBS volumes and snapshots. For information about using Amazon DLM with Amazon EBS, see Automating the Amazon EBS Snapshot Lifecycle in the Amazon EC2 User Guide.

MariaDBManagementClient

azure.com
The Microsoft Azure management API provides create, read, update, and delete functionality for Azure MariaDB resources including servers, databases, firewall rules, VNET rules, security alert policies, log files, encryption keys, active directory administrator and configurations.

Amazon Simple Storage Service