Mock sample for your project: AzureDataManagementClient API

Integrate with "AzureDataManagementClient API" from azure.com in no time with Mockoon's ready to use mock sample

AzureDataManagementClient

azure.com

Version: 2017-03-01-preview


Use this API in your project

Integrate third-party APIs faster by using "AzureDataManagementClient API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

The AzureData management API provides a RESTful set of web APIs to manage Azure Data Resources. For example, register, delete and retrieve a SQL Server, SQL Server registration.

Other APIs by azure.com

ContainerServiceClient

azure.com
The Container Service Client.

AzureStack Azure Bridge Client

azure.com

Azure Media Services

azure.com
This Swagger was generated by the API Framework.

ACE Provisioning ManagementPartner

azure.com
This API describe ACE Provisioning ManagementPartner

InfrastructureInsightsManagementClient

azure.com
Resource provider health operation endpoints and objects.

Update Management

azure.com
APIs for managing software update configurations.

AutomationManagement

azure.com

NetworkAdminManagementClient

azure.com
Virtual Network admin operation endpoints and objects.

StorageManagementClient

azure.com
The Admin Storage Management Client.

Compute Admin Client

azure.com

TrafficManagerManagementClient

azure.com

Cosmos DB

azure.com
Azure Cosmos DB Database Service Resource Provider REST API

Other APIs in the same category

QnAMaker Client

azure.com
An API for QnAMaker Service

RecoveryServicesBackupClient

azure.com

MonitorManagementClient

azure.com

GuestConfiguration

azure.com

Update Management

azure.com
APIs for managing software update configurations.

Amazon Appflow

Welcome to the Amazon AppFlow API reference. This guide is for developers who need detailed information about the Amazon AppFlow API operations, data types, and errors. Amazon AppFlow is a fully managed integration service that enables you to securely transfer data between software as a service (SaaS) applications like Salesforce, Marketo, Slack, and ServiceNow, and Amazon Web Services like Amazon S3 and Amazon Redshift. Use the following links to get started on the Amazon AppFlow API: Actions : An alphabetical list of all Amazon AppFlow API operations. Data types : An alphabetical list of all Amazon AppFlow data types. Common parameters : Parameters that all Query operations can use. Common errors : Client and server errors that all operations can return. If you're new to Amazon AppFlow, we recommend that you review the Amazon AppFlow User Guide. Amazon AppFlow API users can use vendor-specific mechanisms for OAuth, and include applicable OAuth attributes (such as auth-code and redirecturi) with the connector-specific ConnectorProfileProperties when creating a new connector profile using Amazon AppFlow API operations. For example, Salesforce users can refer to the Authorize Apps with OAuth documentation.

Amazon Timestream Query

AWS CodeStar Notifications

This AWS CodeStar Notifications API Reference provides descriptions and usage examples of the operations and data types for the AWS CodeStar Notifications API. You can use the AWS CodeStar Notifications API to work with the following objects: Notification rules, by calling the following: CreateNotificationRule, which creates a notification rule for a resource in your account. DeleteNotificationRule, which deletes a notification rule. DescribeNotificationRule, which provides information about a notification rule. ListNotificationRules, which lists the notification rules associated with your account. UpdateNotificationRule, which changes the name, events, or targets associated with a notification rule. Subscribe, which subscribes a target to a notification rule. Unsubscribe, which removes a target from a notification rule. Targets, by calling the following: DeleteTarget, which removes a notification rule target (SNS topic) from a notification rule. ListTargets, which lists the targets associated with a notification rule. Events, by calling the following: ListEventTypes, which lists the event types you can include in a notification rule. Tags, by calling the following: ListTagsForResource, which lists the tags already associated with a notification rule in your account. TagResource, which associates a tag you provide with a notification rule in your account. UntagResource, which removes a tag from a notification rule in your account. For information about how to use AWS CodeStar Notifications, see link in the CodeStarNotifications User Guide.

AuthorizationManagementClient

azure.com
Role based access control provides you a way to apply granular level policy administration down to individual resources or resource groups. These operations enable you to manage role definitions and role assignments. A role definition describes the set of actions that can be performed on resources. A role assignment grants access to Azure Active Directory users.

AzureDeploymentManager

azure.com
REST APIs for orchestrating deployments using the Azure Deployment Manager (ADM). See https://docs.microsoft.com/en-us/azure/azure-resource-manager/deployment-manager-overview for more information.

CostManagementClient

azure.com

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.