Mock sample for your project: AWS WAF API

Integrate with "AWS WAF API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Version: 2015-08-24


Use this API in your project

Integrate third-party APIs faster by using "AWS WAF API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

This is AWS WAF Classic documentation. For more information, see AWS WAF Classic in the developer guide. For the latest version of AWS WAF, use the AWS WAFV2 API and see the AWS WAF Developer Guide. With the latest version, AWS WAF has a single set of endpoints for regional and global use. This is the AWS WAF Classic API Reference for using AWS WAF Classic with Amazon CloudFront. The AWS WAF Classic actions and data types listed in the reference are available for protecting Amazon CloudFront distributions. You can use these actions and data types via the endpoint waf.amazonaws.com. This guide is for developers who need detailed information about the AWS WAF Classic API actions, data types, and errors. For detailed information about AWS WAF Classic features and an overview of how to use the AWS WAF Classic API, see the AWS WAF Classic in the developer guide.

Other APIs by amazonaws.com

AWS Global Accelerator

AWS Global Accelerator This is the AWS Global Accelerator API Reference. This guide is for developers who need detailed information about AWS Global Accelerator API actions, data types, and errors. For more information about Global Accelerator features, see the AWS Global Accelerator Developer Guide. AWS Global Accelerator is a service in which you create accelerators to improve the performance of your applications for local and global users. Depending on the type of accelerator you choose, you can gain additional benefits. By using a standard accelerator, you can improve availability of your internet applications that are used by a global audience. With a standard accelerator, Global Accelerator directs traffic to optimal endpoints over the AWS global network. For other scenarios, you might choose a custom routing accelerator. With a custom routing accelerator, you can use application logic to directly map one or more users to a specific endpoint among many endpoints. Global Accelerator is a global service that supports endpoints in multiple AWS Regions but you must specify the US West (Oregon) Region to create or update accelerators. By default, Global Accelerator provides you with two static IP addresses that you associate with your accelerator. With a standard accelerator, instead of using the IP addresses that Global Accelerator provides, you can configure these entry points to be IPv4 addresses from your own IP address ranges that you bring to Global Accelerator. The static IP addresses are anycast from the AWS edge network. For a standard accelerator, they distribute incoming application traffic across multiple endpoint resources in multiple AWS Regions, which increases the availability of your applications. Endpoints for standard accelerators can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses that are located in one AWS Region or multiple Regions. For custom routing accelerators, you map traffic that arrives to the static IP addresses to specific Amazon EC2 servers in endpoints that are virtual private cloud (VPC) subnets. The static IP addresses remain assigned to your accelerator for as long as it exists, even if you disable the accelerator and it no longer accepts or routes traffic. However, when you delete an accelerator, you lose the static IP addresses that are assigned to it, so you can no longer route traffic by using them. You can use IAM policies like tag-based permissions with Global Accelerator to limit the users who have permissions to delete an accelerator. For more information, see Tag-based policies. For standard accelerators, Global Accelerator uses the AWS global network to route traffic to the optimal regional endpoint based on health, client location, and policies that you configure. The service reacts instantly to changes in health or configuration to ensure that internet traffic from clients is always directed to healthy endpoints. For a list of the AWS Regions where Global Accelerator and other services are currently supported, see the AWS Region Table. AWS Global Accelerator includes the following components: Static IP addresses Global Accelerator provides you with a set of two static IP addresses that are anycast from the AWS edge network. If you bring your own IP address range to AWS (BYOIP) to use with a standard accelerator, you can instead assign IP addresses from your own pool to use with your accelerator. For more information, see Bring your own IP addresses (BYOIP) in AWS Global Accelerator. The IP addresses serve as single fixed entry points for your clients. If you already have Elastic Load Balancing load balancers, Amazon EC2 instances, or Elastic IP address resources set up for your applications, you can easily add those to a standard accelerator in Global Accelerator. This allows Global Accelerator to use static IP addresses to access the resources. The static IP addresses remain assigned to your accelerator for as long as it exists, even if you disable the accelerator and it no longer accepts or routes traffic. However, when you delete an accelerator, you lose the static IP addresses that are assigned to it, so you can no longer route traffic by using them. You can use IAM policies like tag-based permissions with Global Accelerator to delete an accelerator. For more information, see Tag-based policies. Accelerator An accelerator directs traffic to endpoints over the AWS global network to improve the performance of your internet applications. Each accelerator includes one or more listeners. There are two types of accelerators: A standard accelerator directs traffic to the optimal AWS endpoint based on several factors, including the user’s location, the health of the endpoint, and the endpoint weights that you configure. This improves the availability and performance of your applications. Endpoints can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses. A custom routing accelerator directs traffic to one of possibly thousands of Amazon EC2 instances running in a single or multiple virtual private clouds (VPCs). With custom routing, listener ports are mapped to statically associate port ranges with VPC subnets, which allows Global Accelerator to determine an EC2 instance IP address at the time of connection. By default, all port mapping destinations in a VPC subnet can't receive traffic. You can choose to configure all destinations in the subnet to receive traffic, or to specify individual port mappings that can receive traffic. For more information, see Types of accelerators. DNS name Global Accelerator assigns each accelerator a default Domain Name System (DNS) name, similar to a1234567890abcdef.awsglobalaccelerator.com, that points to the static IP addresses that Global Accelerator assigns to you or that you choose from your own IP address range. Depending on the use case, you can use your accelerator's static IP addresses or DNS name to route traffic to your accelerator, or set up DNS records to route traffic using your own custom domain name. Network zone A network zone services the static IP addresses for your accelerator from a unique IP subnet. Similar to an AWS Availability Zone, a network zone is an isolated unit with its own set of physical infrastructure. When you configure an accelerator, by default, Global Accelerator allocates two IPv4 addresses for it. If one IP address from a network zone becomes unavailable due to IP address blocking by certain client networks, or network disruptions, then client applications can retry on the healthy static IP address from the other isolated network zone. Listener A listener processes inbound connections from clients to Global Accelerator, based on the port (or port range) and protocol (or protocols) that you configure. A listener can be configured for TCP, UDP, or both TCP and UDP protocols. Each listener has one or more endpoint groups associated with it, and traffic is forwarded to endpoints in one of the groups. You associate endpoint groups with listeners by specifying the Regions that you want to distribute traffic to. With a standard accelerator, traffic is distributed to optimal endpoints within the endpoint groups associated with a listener. Endpoint group Each endpoint group is associated with a specific AWS Region. Endpoint groups include one or more endpoints in the Region. With a standard accelerator, you can increase or reduce the percentage of traffic that would be otherwise directed to an endpoint group by adjusting a setting called a traffic dial. The traffic dial lets you easily do performance testing or blue/green deployment testing, for example, for new releases across different AWS Regions. Endpoint An endpoint is a resource that Global Accelerator directs traffic to. Endpoints for standard accelerators can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses. An Application Load Balancer endpoint can be internet-facing or internal. Traffic for standard accelerators is routed to endpoints based on the health of the endpoint along with configuration options that you choose, such as endpoint weights. For each endpoint, you can configure weights, which are numbers that you can use to specify the proportion of traffic to route to each one. This can be useful, for example, to do performance testing within a Region. Endpoints for custom routing accelerators are virtual private cloud (VPC) subnets with one or many EC2 instances.

Amazon Lex Model Building Service

Amazon Lex Build-Time Actions Amazon Lex is an AWS service for building conversational voice and text interfaces. Use these actions to create, update, and delete conversational bots for new and existing client applications.

AWS Resource Access Manager

This is the Resource Access Manager API Reference. This documentation provides descriptions and syntax for each of the actions and data types in RAM. RAM is a service that helps you securely share your Amazon Web Services resources across Amazon Web Services accounts and within your organization or organizational units (OUs) in Organizations. For supported resource types, you can also share resources with IAM roles and IAM users. If you have multiple Amazon Web Services accounts, you can use RAM to share those resources with other accounts. To learn more about RAM, see the following resources: Resource Access Manager product page Resource Access Manager User Guide

Amazon Mobile Analytics

Amazon Mobile Analytics is a service for collecting, visualizing, and understanding app usage data at scale.

AWS Outposts

AWS Outposts is a fully managed service that extends AWS infrastructure, APIs, and tools to customer premises. By providing local access to AWS managed infrastructure, AWS Outposts enables customers to build and run applications on premises using the same programming interfaces as in AWS Regions, while using local compute and storage resources for lower latency and local data processing needs.

Amazon Kinesis

Amazon Kinesis Data Streams Service API Reference Amazon Kinesis Data Streams is a managed service that scales elastically for real-time processing of streaming big data.

Amazon Rekognition

This is the Amazon Rekognition API reference.

AWS Price List Service

Amazon Web Services Price List Service API (Amazon Web Services Price List Service) is a centralized and convenient way to programmatically query Amazon Web Services for services, products, and pricing information. The Amazon Web Services Price List Service uses standardized product attributes such as Location, Storage Class, and Operating System, and provides prices at the SKU level. You can use the Amazon Web Services Price List Service to build cost control and scenario planning tools, reconcile billing data, forecast future spend for budgeting purposes, and provide cost benefit analysis that compare your internal workloads with Amazon Web Services. Use GetServices without a service code to retrieve the service codes for all AWS services, then GetServices with a service code to retreive the attribute names for that service. After you have the service code and attribute names, you can use GetAttributeValues to see what values are available for an attribute. With the service code and an attribute name and value, you can use GetProducts to find specific products that you're interested in, such as an AmazonEC2 instance, with a Provisioned IOPS volumeType. Service Endpoint Amazon Web Services Price List Service API provides the following two endpoints: https://api.pricing.us-east-1.amazonaws.com https://api.pricing.ap-south-1.amazonaws.com

Amazon Kinesis Video Streams Archived Media

AWS Elemental MediaConvert

AWS Elemental MediaConvert

Amazon Sagemaker Edge Manager

SageMaker Edge Manager dataplane service for communicating with active agents.

AWS Service Catalog

AWS Service Catalog AWS Service Catalog enables organizations to create and manage catalogs of IT services that are approved for AWS. To get the most out of this documentation, you should be familiar with the terminology discussed in AWS Service Catalog Concepts.

Other APIs in the same category

SubscriptionClient

azure.com
Subscription client provides an interface to create and manage Azure subscriptions programmatically.

DnsManagementClient

azure.com
The DNS Management Client.

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

MonitorManagementClient

azure.com
Azure Monitor client to create/update/delete metric based alerts.

HDInsightManagementClient

azure.com
The HDInsight Management Client.

WebSite Management Client

azure.com
Use these APIs to manage Azure Websites resources through the Azure Resource Manager. All task operations conform to the HTTP/1.1 protocol specification and each operation returns an x-ms-request-id header that can be used to obtain information about the request. You must make sure that requests made to these resources are secure. For more information, see https://msdn.microsoft.com/en-us/library/azure/dn790557.aspx.

HDInsightManagementClient

azure.com
The HDInsight Management Client.

Azure Media Services

azure.com
This Swagger was generated by the API Framework.

IoTSpacesClient

azure.com
Use this API to manage the IoTSpaces service instances in your Azure subscription.

Domains API Client

azure.com

ManagedLabsClient

azure.com
The Managed Labs Client.

MonitorManagementClient

azure.com