Mock sample for your project: AWS Single Sign-On Admin API

Integrate with "AWS Single Sign-On Admin API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS Single Sign-On Admin

amazonaws.com

Version: 2020-07-20


Use this API in your project

Integrate third-party APIs faster by using "AWS Single Sign-On Admin API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

Amazon Web Services Single Sign On (SSO) is a cloud SSO service that makes it easy to centrally manage SSO access to multiple Amazon Web Services accounts and business applications. This guide provides information on SSO operations which could be used for access management of Amazon Web Services accounts. For information about Amazon Web Services SSO features, see the Amazon Web Services Single Sign-On User Guide. Many operations in the SSO APIs rely on identifiers for users and groups, known as principals. For more information about how to work with principals and principal IDs in Amazon Web Services SSO, see the Amazon Web Services SSO Identity Store API Reference.

Other APIs by amazonaws.com

AWS Data Exchange

AWS Data Exchange is a service that makes it easy for AWS customers to exchange data in the cloud. You can use the AWS Data Exchange APIs to create, update, manage, and access file-based data set in the AWS Cloud. As a subscriber, you can view and access the data sets that you have an entitlement to through a subscription. You can use the APIS to download or copy your entitled data sets to Amazon S3 for use across a variety of AWS analytics and machine learning services. As a provider, you can create and manage your data sets that you would like to publish to a product. Being able to package and provide your data sets into products requires a few steps to determine eligibility. For more information, visit the AWS Data Exchange User Guide. A data set is a collection of data that can be changed or updated over time. Data sets can be updated using revisions, which represent a new version or incremental change to a data set. A revision contains one or more assets. An asset in AWS Data Exchange is a piece of data that can be stored as an Amazon S3 object. The asset can be a structured data file, an image file, or some other data file. Jobs are asynchronous import or export operations used to create or copy assets.

Amazon SageMaker Service

Provides APIs for creating and managing Amazon SageMaker resources. Other Resources: Amazon SageMaker Developer Guide Amazon Augmented AI Runtime API Reference

Amazon Personalize

Amazon Personalize is a machine learning service that makes it easy to add individualized recommendations to customers.

AWS Performance Insights

Amazon RDS Performance Insights Amazon RDS Performance Insights enables you to monitor and explore different dimensions of database load based on data captured from a running DB instance. The guide provides detailed information about Performance Insights data types, parameters and errors. When Performance Insights is enabled, the Amazon RDS Performance Insights API provides visibility into the performance of your DB instance. Amazon CloudWatch provides the authoritative source for AWS service-vended monitoring metrics. Performance Insights offers a domain-specific view of DB load. DB load is measured as Average Active Sessions. Performance Insights provides the data to API consumers as a two-dimensional time-series dataset. The time dimension provides DB load data for each time point in the queried time range. Each time point decomposes overall load in relation to the requested dimensions, measured at that time point. Examples include SQL, Wait event, User, and Host. To learn more about Performance Insights and Amazon Aurora DB instances, go to the Amazon Aurora User Guide. To learn more about Performance Insights and Amazon RDS DB instances, go to the Amazon RDS User Guide.

AWS OpsWorks CM

AWS OpsWorks CM AWS OpsWorks for configuration management (CM) is a service that runs and manages configuration management servers. You can use AWS OpsWorks CM to create and manage AWS OpsWorks for Chef Automate and AWS OpsWorks for Puppet Enterprise servers, and add or remove nodes for the servers to manage. Glossary of terms Server : A configuration management server that can be highly-available. The configuration management server runs on an Amazon Elastic Compute Cloud (EC2) instance, and may use various other AWS services, such as Amazon Relational Database Service (RDS) and Elastic Load Balancing. A server is a generic abstraction over the configuration manager that you want to use, much like Amazon RDS. In AWS OpsWorks CM, you do not start or stop servers. After you create servers, they continue to run until they are deleted. Engine : The engine is the specific configuration manager that you want to use. Valid values in this release include ChefAutomate and Puppet. Backup : This is an application-level backup of the data that the configuration manager stores. AWS OpsWorks CM creates an S3 bucket for backups when you launch the first server. A backup maintains a snapshot of a server's configuration-related attributes at the time the backup starts. Events : Events are always related to a server. Events are written during server creation, when health checks run, when backups are created, when system maintenance is performed, etc. When you delete a server, the server's events are also deleted. Account attributes : Every account has attributes that are assigned in the AWS OpsWorks CM database. These attributes store information about configuration limits (servers, backups, etc.) and your customer account. Endpoints AWS OpsWorks CM supports the following endpoints, all HTTPS. You must connect to one of the following endpoints. Your servers can only be accessed or managed within the endpoint in which they are created. opsworks-cm.us-east-1.amazonaws.com opsworks-cm.us-east-2.amazonaws.com opsworks-cm.us-west-1.amazonaws.com opsworks-cm.us-west-2.amazonaws.com opsworks-cm.ap-northeast-1.amazonaws.com opsworks-cm.ap-southeast-1.amazonaws.com opsworks-cm.ap-southeast-2.amazonaws.com opsworks-cm.eu-central-1.amazonaws.com opsworks-cm.eu-west-1.amazonaws.com For more information, see AWS OpsWorks endpoints and quotas in the AWS General Reference. Throttling limits All API operations allow for five requests per second with a burst of 10 requests per second.

Amazon CloudWatch

Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.

Amazon Neptune

Amazon Neptune Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. The core of Amazon Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with milliseconds latency. Amazon Neptune supports popular graph models Property Graph and W3C's RDF, and their respective query languages Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune powers graph use cases such as recommendation engines, fraud detection, knowledge graphs, drug discovery, and network security. This interface reference for Amazon Neptune contains documentation for a programming or command line interface you can use to manage Amazon Neptune. Note that Amazon Neptune is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide.

AWS Price List Service

Amazon Web Services Price List Service API (Amazon Web Services Price List Service) is a centralized and convenient way to programmatically query Amazon Web Services for services, products, and pricing information. The Amazon Web Services Price List Service uses standardized product attributes such as Location, Storage Class, and Operating System, and provides prices at the SKU level. You can use the Amazon Web Services Price List Service to build cost control and scenario planning tools, reconcile billing data, forecast future spend for budgeting purposes, and provide cost benefit analysis that compare your internal workloads with Amazon Web Services. Use GetServices without a service code to retrieve the service codes for all AWS services, then GetServices with a service code to retreive the attribute names for that service. After you have the service code and attribute names, you can use GetAttributeValues to see what values are available for an attribute. With the service code and an attribute name and value, you can use GetProducts to find specific products that you're interested in, such as an AmazonEC2 instance, with a Provisioned IOPS volumeType. Service Endpoint Amazon Web Services Price List Service API provides the following two endpoints: https://api.pricing.us-east-1.amazonaws.com https://api.pricing.ap-south-1.amazonaws.com

AWS Resource Groups

AWS Resource Groups AWS Resource Groups lets you organize AWS resources such as Amazon EC2 instances, Amazon Relational Database Service databases, and Amazon S3 buckets into groups using criteria that you define as tags. A resource group is a collection of resources that match the resource types specified in a query, and share one or more tags or portions of tags. You can create a group of resources based on their roles in your cloud infrastructure, lifecycle stages, regions, application layers, or virtually any criteria. Resource Groups enable you to automate management tasks, such as those in AWS Systems Manager Automation documents, on tag-related resources in AWS Systems Manager. Groups of tagged resources also let you quickly view a custom console in AWS Systems Manager that shows AWS Config compliance and other monitoring data about member resources. To create a resource group, build a resource query, and specify tags that identify the criteria that members of the group have in common. Tags are key-value pairs. For more information about Resource Groups, see the AWS Resource Groups User Guide. AWS Resource Groups uses a REST-compliant API that you can use to perform the following types of operations. Create, Read, Update, and Delete (CRUD) operations on resource groups and resource query entities Applying, editing, and removing tags from resource groups Resolving resource group member ARNs so they can be returned as search results Getting data about resources that are members of a group Searching AWS resources based on a resource query

AWS Certificate Manager Private Certificate Authority

This is the ACM Private CA API Reference. It provides descriptions, syntax, and usage examples for each of the actions and data types involved in creating and managing private certificate authorities (CA) for your organization. The documentation for each action shows the Query API request parameters and the XML response. Alternatively, you can use one of the AWS SDKs to access an API that's tailored to the programming language or platform that you're using. For more information, see AWS SDKs. Each ACM Private CA API operation has a quota that determines the number of times the operation can be called per second. ACM Private CA throttles API requests at different rates depending on the operation. Throttling means that ACM Private CA rejects an otherwise valid request because the request exceeds the operation's quota for the number of requests per second. When a request is throttled, ACM Private CA returns a ThrottlingException error. ACM Private CA does not guarantee a minimum request rate for APIs. To see an up-to-date list of your ACM Private CA quotas, or to request a quota increase, log into your AWS account and visit the Service Quotas console.

Amazon Cognito Identity

Amazon Cognito Federated Identities Amazon Cognito Federated Identities is a web service that delivers scoped temporary credentials to mobile devices and other untrusted environments. It uniquely identifies a device and supplies the user with a consistent identity over the lifetime of an application. Using Amazon Cognito Federated Identities, you can enable authentication with one or more third-party identity providers (Facebook, Google, or Login with Amazon) or an Amazon Cognito user pool, and you can also choose to support unauthenticated access from your app. Cognito delivers a unique identifier for each user and acts as an OpenID token provider trusted by AWS Security Token Service (STS) to access temporary, limited-privilege AWS credentials. For a description of the authentication flow from the Amazon Cognito Developer Guide see Authentication Flow. For more information see Amazon Cognito Federated Identities.

AWS Migration Hub

The AWS Migration Hub API methods help to obtain server and application migration status and integrate your resource-specific migration tool by providing a programmatic interface to Migration Hub. Remember that you must set your AWS Migration Hub home region before you call any of these APIs, or a HomeRegionNotSetException error will be returned. Also, you must make the API calls while in your home region.

Other APIs in the same category

AutomationManagement

azure.com

DeploymentAdminClient

azure.com
Deployment Admin Client.

SqlManagementClient

azure.com
The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.

Amazon QLDB

The control plane for Amazon QLDB

AWS Data Pipeline

AWS Data Pipeline configures and manages a data-driven workflow called a pipeline. AWS Data Pipeline handles the details of scheduling and ensuring that data dependencies are met so that your application can focus on processing the data. AWS Data Pipeline provides a JAR implementation of a task runner called AWS Data Pipeline Task Runner. AWS Data Pipeline Task Runner provides logic for common data management scenarios, such as performing database queries and running data analysis using Amazon Elastic MapReduce (Amazon EMR). You can use AWS Data Pipeline Task Runner as your task runner, or you can write your own task runner to provide custom data management. AWS Data Pipeline implements two main sets of functionality. Use the first set to create a pipeline and define data sources, schedules, dependencies, and the transforms to be performed on the data. Use the second set in your task runner application to receive the next task ready for processing. The logic for performing the task, such as querying the data, running data analysis, or converting the data from one format to another, is contained within the task runner. The task runner performs the task assigned to it by the web service, reporting progress to the web service as it does so. When the task is done, the task runner reports the final success or failure of the task to the web service.

AutomationManagement

azure.com

Alexa For Business

Alexa for Business helps you use Alexa in your organization. Alexa for Business provides you with the tools to manage Alexa devices, enroll your users, and assign skills, at scale. You can build your own context-aware voice skills using the Alexa Skills Kit and the Alexa for Business API operations. You can also make these available as private skills for your organization. Alexa for Business makes it efficient to voice-enable your products and services, thus providing context-aware voice experiences for your customers. Device makers building with the Alexa Voice Service (AVS) can create fully integrated solutions, register their products with Alexa for Business, and manage them as shared devices in their organization.
Amazon MQ is a managed message broker service for Apache ActiveMQ and RabbitMQ that makes it easy to set up and operate message brokers in the cloud. A message broker allows software applications and components to communicate using various programming languages, operating systems, and formal messaging protocols.

Amazon Elastic Kubernetes Service

Amazon Elastic Kubernetes Service (Amazon EKS) is a managed service that makes it easy for you to run Kubernetes on Amazon Web Services without needing to stand up or maintain your own Kubernetes control plane. Kubernetes is an open-source system for automating the deployment, scaling, and management of containerized applications. Amazon EKS runs up-to-date versions of the open-source Kubernetes software, so you can use all the existing plugins and tooling from the Kubernetes community. Applications running on Amazon EKS are fully compatible with applications running on any standard Kubernetes environment, whether running in on-premises data centers or public clouds. This means that you can easily migrate any standard Kubernetes application to Amazon EKS without any code modification required.

Amazon EMR

Amazon EMR is a web service that makes it easier to process large amounts of data efficiently. Amazon EMR uses Hadoop processing combined with several Amazon Web Services services to do tasks such as web indexing, data mining, log file analysis, machine learning, scientific simulation, and data warehouse management.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Property entity associated with your Azure API Management deployment. API Management policies are a powerful capability of the system that allow the publisher to change the behavior of the API through configuration. Policies are a collection of statements that are executed sequentially on the request or response of an API. Policy statements can be constructed using literal text values, policy expressions, and properties. Each API Management service instance has a properties collection of key/value pairs that are global to the service instance. These properties can be used to manage constant string values across all API configuration and policies.

BatchService

azure.com
A client for issuing REST requests to the Azure Batch service.