Mock sample for your project: Service Quotas API

Integrate with "Service Quotas API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Service Quotas

amazonaws.com

Version: 2019-06-24


Use this API in your project

Speed up your application development by using "Service Quotas API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
It also improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

With Service Quotas, you can view and manage your quotas easily as your AWS workloads grow. Quotas, also referred to as limits, are the maximum number of resources that you can create in your AWS account. For more information, see the Service Quotas User Guide.

Other APIs by amazonaws.com

AWS Certificate Manager

Amazon Web Services Certificate Manager You can use Amazon Web Services Certificate Manager (ACM) to manage SSL/TLS certificates for your Amazon Web Services-based websites and applications. For more information about using ACM, see the Amazon Web Services Certificate Manager User Guide.

Amazon Macie 2

Amazon Macie is a fully managed data security and data privacy service that uses machine learning and pattern matching to discover and protect your sensitive data in AWS. Macie automates the discovery of sensitive data, such as PII and intellectual property, to provide you with insight into the data that your organization stores in AWS. Macie also provides an inventory of your Amazon S3 buckets, which it continually monitors for you. If Macie detects sensitive data or potential data access issues, it generates detailed findings for you to review and act upon as necessary.

Amazon Personalize Events

Amazon Personalize can consume real-time user event data, such as stream or click data, and use it for model training either alone or combined with historical data. For more information see Recording Events.

Elastic Load Balancing

Elastic Load Balancing A load balancer can distribute incoming traffic across your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered instances and ensures that it routes traffic only to healthy instances. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer and a protocol and port number for connections from the load balancer to the instances. Elastic Load Balancing supports three types of load balancers: Application Load Balancers, Network Load Balancers, and Classic Load Balancers. You can select a load balancer based on your application needs. For more information, see the Elastic Load Balancing User Guide. This reference covers the 2012-06-01 API, which supports Classic Load Balancers. The 2015-12-01 API supports Application Load Balancers and Network Load Balancers. To get started, create a load balancer with one or more listeners using CreateLoadBalancer. Register your instances with the load balancer using RegisterInstancesWithLoadBalancer. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds with a 200 OK response code.

Amazon Timestream Write

Amazon Timestream is a fast, scalable, fully managed time series database service that makes it easy to store and analyze trillions of time series data points per day. With Timestream, you can easily store and analyze IoT sensor data to derive insights from your IoT applications. You can analyze industrial telemetry to streamline equipment management and maintenance. You can also store and analyze log data and metrics to improve the performance and availability of your applications. Timestream is built from the ground up to effectively ingest, process, and store time series data. It organizes data to optimize query processing. It automatically scales based on the volume of data ingested and on the query volume to ensure you receive optimal performance while inserting and querying data. As your data grows over time, Timestream’s adaptive query processing engine spans across storage tiers to provide fast analysis while reducing costs.

AWS OpsWorks

AWS OpsWorks Welcome to the AWS OpsWorks Stacks API Reference. This guide provides descriptions, syntax, and usage examples for AWS OpsWorks Stacks actions and data types, including common parameters and error codes. AWS OpsWorks Stacks is an application management service that provides an integrated experience for overseeing the complete application lifecycle. For information about this product, go to the AWS OpsWorks details page. SDKs and CLI The most common way to use the AWS OpsWorks Stacks API is by using the AWS Command Line Interface (CLI) or by using one of the AWS SDKs to implement applications in your preferred language. For more information, see: AWS CLI AWS SDK for Java AWS SDK for .NET AWS SDK for PHP 2 AWS SDK for Ruby AWS SDK for Node.js AWS SDK for Python(Boto) Endpoints AWS OpsWorks Stacks supports the following endpoints, all HTTPS. You must connect to one of the following endpoints. Stacks can only be accessed or managed within the endpoint in which they are created. opsworks.us-east-1.amazonaws.com opsworks.us-east-2.amazonaws.com opsworks.us-west-1.amazonaws.com opsworks.us-west-2.amazonaws.com opsworks.ca-central-1.amazonaws.com (API only; not available in the AWS console) opsworks.eu-west-1.amazonaws.com opsworks.eu-west-2.amazonaws.com opsworks.eu-west-3.amazonaws.com opsworks.eu-central-1.amazonaws.com opsworks.ap-northeast-1.amazonaws.com opsworks.ap-northeast-2.amazonaws.com opsworks.ap-south-1.amazonaws.com opsworks.ap-southeast-1.amazonaws.com opsworks.ap-southeast-2.amazonaws.com opsworks.sa-east-1.amazonaws.com Chef Versions When you call CreateStack, CloneStack, or UpdateStack we recommend you use the ConfigurationManager parameter to specify the Chef version. The recommended and default value for Linux stacks is currently 12. Windows stacks use Chef 12.2. For more information, see Chef Versions. You can specify Chef 12, 11.10, or 11.4 for your Linux stack. We recommend migrating your existing Linux stacks to Chef 12 as soon as possible.

Amazon Elastic Kubernetes Service

Amazon Elastic Kubernetes Service (Amazon EKS) is a managed service that makes it easy for you to run Kubernetes on Amazon Web Services without needing to stand up or maintain your own Kubernetes control plane. Kubernetes is an open-source system for automating the deployment, scaling, and management of containerized applications. Amazon EKS runs up-to-date versions of the open-source Kubernetes software, so you can use all the existing plugins and tooling from the Kubernetes community. Applications running on Amazon EKS are fully compatible with applications running on any standard Kubernetes environment, whether running in on-premises data centers or public clouds. This means that you can easily migrate any standard Kubernetes application to Amazon EKS without any code modification required.

Amazon QLDB Session

The transactional data APIs for Amazon QLDB Instead of interacting directly with this API, we recommend using the QLDB driver or the QLDB shell to execute data transactions on a ledger. If you are working with an AWS SDK, use the QLDB driver. The driver provides a high-level abstraction layer above this QLDB Session data plane and manages SendCommand API calls for you. For information and a list of supported programming languages, see Getting started with the driver in the Amazon QLDB Developer Guide. If you are working with the AWS Command Line Interface (AWS CLI), use the QLDB shell. The shell is a command line interface that uses the QLDB driver to interact with a ledger. For information, see Accessing Amazon QLDB using the QLDB shell.

Amazon CloudFront

Amazon CloudFront This is the Amazon CloudFront API Reference. This guide is for developers who need detailed information about CloudFront API actions, data types, and errors. For detailed information about CloudFront features, see the Amazon CloudFront Developer Guide.

AWS Elemental MediaConvert

AWS Elemental MediaConvert

AWS Audit Manager

Welcome to the Audit Manager API reference. This guide is for developers who need detailed information about the Audit Manager API operations, data types, and errors. Audit Manager is a service that provides automated evidence collection so that you can continuously audit your Amazon Web Services usage, and assess the effectiveness of your controls to better manage risk and simplify compliance. Audit Manager provides pre-built frameworks that structure and automate assessments for a given compliance standard. Frameworks include a pre-built collection of controls with descriptions and testing procedures, which are grouped according to the requirements of the specified compliance standard or regulation. You can also customize frameworks and controls to support internal audits with unique requirements. Use the following links to get started with the Audit Manager API: Actions : An alphabetical list of all Audit Manager API operations. Data types : An alphabetical list of all Audit Manager data types. Common parameters : Parameters that all Query operations can use. Common errors : Client and server errors that all operations can return. If you're new to Audit Manager, we recommend that you review the Audit Manager User Guide.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

Other APIs in the same category

PostgreSQLManagementClient

azure.com
The Microsoft Azure management API provides create, read, update, and delete functionality for Azure PostgreSQL resources including servers, databases, firewall rules, VNET rules, security alert policies, log files and configurations with new business model.

DnsManagementClient

azure.com
The DNS Management Client.

Content Moderator Client

azure.com
You use the API to scan your content as it is generated. Content Moderator then processes your content and sends the results along with relevant information either back to your systems or to the built-in review tool. You can use this information to take decisions e.g. take it down, send to human judge, etc.
When using the API, images need to have a minimum of 128 pixels and a maximum file size of 4MB.
Text can be at most 1024 characters long.
If the content passed to the text API or the image API exceeds the size limits, the API will return an error code that informs about the issue.

QnAMaker Client

azure.com
An API for QnAMaker Service

Anomaly Detector Client

azure.com
The Anomaly Detector API detects anomalies automatically in time series data. It supports two kinds of mode, one is for stateless using, another is for stateful using. In stateless mode, there are three functionalities. Entire Detect is for detecting the whole series with model trained by the time series, Last Detect is detecting last point with model trained by points before. ChangePoint Detect is for detecting trend changes in time series. In stateful mode, user can store time series, the stored time series will be used for detection anomalies. Under this mode, user can still use the above three functionalities by only giving a time range without preparing time series in client side. Besides the above three functionalities, stateful model also provide group based detection and labeling service. By leveraging labeling service user can provide labels for each detection result, these labels will be used for retuning or regenerating detection models. Inconsistency detection is a kind of group based detection, this detection will find inconsistency ones in a set of time series. By using anomaly detector service, business customers can discover incidents and establish a logic flow for root cause analysis.

Azure Data Catalog Resource Provider

azure.com
The Azure Data Catalog Resource Provider Services API.

Mixed Reality

azure.com
Mixed Reality Resource Provider Spatial Anchors Resource API

Azure Media Services

azure.com
This Swagger was generated by the API Framework.

VM Insights Onboarding

azure.com
API to manage VM Insights Onboarding

Azure Bot Service

azure.com
Azure Bot Service is a platform for creating smart conversational agents.

MonitorManagementClient

azure.com

CdnManagementClient

azure.com
Use these APIs to manage Azure CDN resources through the Azure Resource Manager. You must make sure that requests made to these resources are secure.