Mock sample for your project: AWS Proton API

Integrate with "AWS Proton API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS Proton

amazonaws.com

Version: 2020-07-20


Use this API in your project

Integrate third-party APIs faster by using "AWS Proton API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
Improve your integration tests by mocking third-party APIs and cover more edge cases: slow response time, random failures, etc.

Description

This is the AWS Proton Service API Reference. It provides descriptions, syntax and usage examples for each of the actions and data types for the AWS Proton service. The documentation for each action shows the Query API request parameters and the XML response. Alternatively, you can use the AWS CLI to access an API. For more information, see the AWS Command Line Interface User Guide. The AWS Proton service is a two-pronged automation framework. Administrators create service templates to provide standardized infrastructure and deployment tooling for serverless and container based applications. Developers, in turn, select from the available service templates to automate their application or service deployments. Because administrators define the infrastructure and tooling that AWS Proton deploys and manages, they need permissions to use all of the listed API operations. When developers select a specific infrastructure and tooling set, AWS Proton deploys their applications. To monitor their applications that are running on AWS Proton, developers need permissions to the service create, list, update and delete API operations and the service instance list and update API operations. To learn more about AWS Proton administration, see the AWS Proton Administrator Guide. To learn more about deploying serverless and containerized applications on AWS Proton, see the AWS Proton User Guide. Ensuring Idempotency When you make a mutating API request, the request typically returns a result before the asynchronous workflows of the operation are complete. Operations might also time out or encounter other server issues before they're complete, even if the request already returned a result. This might make it difficult to determine whether the request succeeded. Moreover, you might need to retry the request multiple times to ensure that the operation completes successfully. However, if the original request and the subsequent retries are successful, the operation occurs multiple times. This means that you might create more resources than you intended. Idempotency ensures that an API request action completes no more than one time. With an idempotent request, if the original request action completes successfully, any subsequent retries complete successfully without performing any further actions. However, the result might contain updated information, such as the current creation status. The following lists of APIs are grouped according to methods that ensure idempotency. Idempotent create APIs with a client token The API actions in this list support idempotency with the use of a client token. The corresponding AWS CLI commands also support idempotency using a client token. A client token is a unique, case-sensitive string of up to 64 ASCII characters. To make an idempotent API request using one of these actions, specify a client token in the request. We recommend that you don't reuse the same client token for other API requests. If you don’t provide a client token for these APIs, a default client token is automatically provided by SDKs. Given a request action that has succeeded: If you retry the request using the same client token and the same parameters, the retry succeeds without performing any further actions other than returning the original resource detail data in the response. If you retry the request using the same client token, but one or more of the parameters are different, the retry throws a ValidationException with an IdempotentParameterMismatch error. Client tokens expire eight hours after a request is made. If you retry the request with the expired token, a new resource is created. If the original resource is deleted and you retry the request, a new resource is created. Idempotent create APIs with a client token: CreateEnvironmentTemplateVersion CreateServiceTemplateVersion CreateEnvironmentAccountConnection Idempotent create APIs Given a request action that has succeeded: If you retry the request with an API from this group, and the original resource hasn't been modified, the retry succeeds without performing any further actions other than returning the original resource detail data in the response. If the original resource has been modified, the retry throws a ConflictException. If you retry with different input parameters, the retry throws a ValidationException with an IdempotentParameterMismatch error. Idempotent create APIs: CreateEnvironmentTemplate CreateServiceTemplate CreateEnvironment CreateService Idempotent delete APIs Given a request action that has succeeded: When you retry the request with an API from this group and the resource was deleted, its metadata is returned in the response. If you retry and the resource doesn't exist, the response is empty. In both cases, the retry succeeds. Idempotent delete APIs: DeleteEnvironmentTemplate DeleteEnvironmentTemplateVersion DeleteServiceTemplate DeleteServiceTemplateVersion DeleteEnvironmentAccountConnection Asynchronous idempotent delete APIs Given a request action that has succeeded: If you retry the request with an API from this group, if the original request delete operation status is DELETEINPROGRESS, the retry returns the resource detail data in the response without performing any further actions. If the original request delete operation is complete, a retry returns an empty response. Asynchronous idempotent delete APIs: DeleteEnvironment DeleteService

Other APIs by amazonaws.com

Auto Scaling

Amazon EC2 Auto Scaling Amazon EC2 Auto Scaling is designed to automatically launch or terminate EC2 instances based on user-defined scaling policies, scheduled actions, and health checks. For more information about Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling User Guide. For information about granting IAM users required permissions for calls to Amazon EC2 Auto Scaling, see Granting IAM users required permissions for Amazon EC2 Auto Scaling resources in the Amazon EC2 Auto Scaling API Reference.

Amazon Kinesis Video Signaling Channels

Kinesis Video Streams Signaling Service is a intermediate service that establishes a communication channel for discovering peers, transmitting offers and answers in order to establish peer-to-peer connection in webRTC technology.

CodeArtifact

AWS CodeArtifact is a fully managed artifact repository compatible with language-native package managers and build tools such as npm, Apache Maven, and pip. You can use CodeArtifact to share packages with development teams and pull packages. Packages can be pulled from both public and CodeArtifact repositories. You can also create an upstream relationship between a CodeArtifact repository and another repository, which effectively merges their contents from the point of view of a package manager client. AWS CodeArtifact Components Use the information in this guide to help you work with the following CodeArtifact components: Repository : A CodeArtifact repository contains a set of package versions, each of which maps to a set of assets, or files. Repositories are polyglot, so a single repository can contain packages of any supported type. Each repository exposes endpoints for fetching and publishing packages using tools like the npm CLI, the Maven CLI ( mvn ), and pip . Domain : Repositories are aggregated into a higher-level entity known as a domain. All package assets and metadata are stored in the domain, but are consumed through repositories. A given package asset, such as a Maven JAR file, is stored once per domain, no matter how many repositories it's present in. All of the assets and metadata in a domain are encrypted with the same customer master key (CMK) stored in AWS Key Management Service (AWS KMS). Each repository is a member of a single domain and can't be moved to a different domain. The domain allows organizational policy to be applied across multiple repositories, such as which accounts can access repositories in the domain, and which public repositories can be used as sources of packages. Although an organization can have multiple domains, we recommend a single production domain that contains all published artifacts so that teams can find and share packages across their organization. Package : A package is a bundle of software and the metadata required to resolve dependencies and install the software. CodeArtifact supports npm, PyPI, and Maven package formats. In CodeArtifact, a package consists of: A name (for example, webpack is the name of a popular npm package) An optional namespace (for example, @types in @types/node) A set of versions (for example, 1.0.0, 1.0.1, 1.0.2, etc.) Package-level metadata (for example, npm tags) Package version : A version of a package, such as @types/node 12.6.9. The version number format and semantics vary for different package formats. For example, npm package versions must conform to the Semantic Versioning specification. In CodeArtifact, a package version consists of the version identifier, metadata at the package version level, and a set of assets. Upstream repository : One repository is upstream of another when the package versions in it can be accessed from the repository endpoint of the downstream repository, effectively merging the contents of the two repositories from the point of view of a client. CodeArtifact allows creating an upstream relationship between two repositories. Asset : An individual file stored in CodeArtifact associated with a package version, such as an npm.tgz file or Maven POM and JAR files. CodeArtifact supports these operations: AssociateExternalConnection : Adds an existing external connection to a repository. CopyPackageVersions : Copies package versions from one repository to another repository in the same domain. CreateDomain : Creates a domain CreateRepository : Creates a CodeArtifact repository in a domain. DeleteDomain : Deletes a domain. You cannot delete a domain that contains repositories. DeleteDomainPermissionsPolicy : Deletes the resource policy that is set on a domain. DeletePackageVersions : Deletes versions of a package. After a package has been deleted, it can be republished, but its assets and metadata cannot be restored because they have been permanently removed from storage. DeleteRepository : Deletes a repository. DeleteRepositoryPermissionsPolicy : Deletes the resource policy that is set on a repository. DescribeDomain : Returns a DomainDescription object that contains information about the requested domain. DescribePackageVersion : Returns a PackageVersionDescription object that contains details about a package version. DescribeRepository : Returns a RepositoryDescription object that contains detailed information about the requested repository. DisposePackageVersions : Disposes versions of a package. A package version with the status Disposed cannot be restored because they have been permanently removed from storage. DisassociateExternalConnection : Removes an existing external connection from a repository. GetAuthorizationToken : Generates a temporary authorization token for accessing repositories in the domain. The token expires the authorization period has passed. The default authorization period is 12 hours and can be customized to any length with a maximum of 12 hours. GetDomainPermissionsPolicy : Returns the policy of a resource that is attached to the specified domain. GetPackageVersionAsset : Returns the contents of an asset that is in a package version. GetPackageVersionReadme : Gets the readme file or descriptive text for a package version. GetRepositoryEndpoint : Returns the endpoint of a repository for a specific package format. A repository has one endpoint for each package format: npm pypi maven GetRepositoryPermissionsPolicy : Returns the resource policy that is set on a repository. ListDomains : Returns a list of DomainSummary objects. Each returned DomainSummary object contains information about a domain. ListPackages : Lists the packages in a repository. ListPackageVersionAssets : Lists the assets for a given package version. ListPackageVersionDependencies : Returns a list of the direct dependencies for a package version. ListPackageVersions : Returns a list of package versions for a specified package in a repository. ListRepositories : Returns a list of repositories owned by the AWS account that called this method. ListRepositoriesInDomain : Returns a list of the repositories in a domain. PutDomainPermissionsPolicy : Attaches a resource policy to a domain. PutRepositoryPermissionsPolicy : Sets the resource policy on a repository that specifies permissions to access it. UpdatePackageVersionsStatus : Updates the status of one or more versions of a package. UpdateRepository : Updates the properties of a repository.

AWS Database Migration Service

Database Migration Service Database Migration Service (DMS) can migrate your data to and from the most widely used commercial and open-source databases such as Oracle, PostgreSQL, Microsoft SQL Server, Amazon Redshift, MariaDB, Amazon Aurora, MySQL, and SAP Adaptive Server Enterprise (ASE). The service supports homogeneous migrations such as Oracle to Oracle, as well as heterogeneous migrations between different database platforms, such as Oracle to MySQL or SQL Server to PostgreSQL. For more information about DMS, see What Is Database Migration Service? in the Database Migration Service User Guide.

Application Auto Scaling

With Application Auto Scaling, you can configure automatic scaling for the following resources: Amazon AppStream 2.0 fleets Amazon Aurora Replicas Amazon Comprehend document classification and entity recognizer endpoints Amazon DynamoDB tables and global secondary indexes throughput capacity Amazon ECS services Amazon ElastiCache for Redis clusters (replication groups) Amazon EMR clusters Amazon Keyspaces (for Apache Cassandra) tables Lambda function provisioned concurrency Amazon Managed Streaming for Apache Kafka broker storage Amazon SageMaker endpoint variants Spot Fleet (Amazon EC2) requests Custom resources provided by your own applications or services API Summary The Application Auto Scaling service API includes three key sets of actions: Register and manage scalable targets - Register Amazon Web Services or custom resources as scalable targets (a resource that Application Auto Scaling can scale), set minimum and maximum capacity limits, and retrieve information on existing scalable targets. Configure and manage automatic scaling - Define scaling policies to dynamically scale your resources in response to CloudWatch alarms, schedule one-time or recurring scaling actions, and retrieve your recent scaling activity history. Suspend and resume scaling - Temporarily suspend and later resume automatic scaling by calling the RegisterScalableTarget API action for any Application Auto Scaling scalable target. You can suspend and resume (individually or in combination) scale-out activities that are triggered by a scaling policy, scale-in activities that are triggered by a scaling policy, and scheduled scaling. To learn more about Application Auto Scaling, including information about granting IAM users required permissions for Application Auto Scaling actions, see the Application Auto Scaling User Guide.

AWS Migration Hub

The AWS Migration Hub API methods help to obtain server and application migration status and integrate your resource-specific migration tool by providing a programmatic interface to Migration Hub. Remember that you must set your AWS Migration Hub home region before you call any of these APIs, or a HomeRegionNotSetException error will be returned. Also, you must make the API calls while in your home region.

Amazon Fraud Detector

This is the Amazon Fraud Detector API Reference. This guide is for developers who need detailed information about Amazon Fraud Detector API actions, data types, and errors. For more information about Amazon Fraud Detector features, see the Amazon Fraud Detector User Guide.

Amazon Data Lifecycle Manager

Amazon Data Lifecycle Manager With Amazon Data Lifecycle Manager, you can manage the lifecycle of your Amazon Web Services resources. You create lifecycle policies, which are used to automate operations on the specified resources. Amazon DLM supports Amazon EBS volumes and snapshots. For information about using Amazon DLM with Amazon EBS, see Automating the Amazon EBS Snapshot Lifecycle in the Amazon EC2 User Guide.

Amazon EMR

Amazon EMR is a web service that makes it easier to process large amounts of data efficiently. Amazon EMR uses Hadoop processing combined with several Amazon Web Services services to do tasks such as web indexing, data mining, log file analysis, machine learning, scientific simulation, and data warehouse management.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

Amazon CloudWatch Application Insights

Amazon CloudWatch Application Insights Amazon CloudWatch Application Insights is a service that helps you detect common problems with your applications. It enables you to pinpoint the source of issues in your applications (built with technologies such as Microsoft IIS, .NET, and Microsoft SQL Server), by providing key insights into detected problems. After you onboard your application, CloudWatch Application Insights identifies, recommends, and sets up metrics and logs. It continuously analyzes and correlates your metrics and logs for unusual behavior to surface actionable problems with your application. For example, if your application is slow and unresponsive and leading to HTTP 500 errors in your Application Load Balancer (ALB), Application Insights informs you that a memory pressure problem with your SQL Server database is occurring. It bases this analysis on impactful metrics and log errors.

AWS Compute Optimizer

Compute Optimizer is a service that analyzes the configuration and utilization metrics of your Amazon Web Services compute resources, such as Amazon EC2 instances, Amazon EC2 Auto Scaling groups, Lambda functions, and Amazon EBS volumes. It reports whether your resources are optimal, and generates optimization recommendations to reduce the cost and improve the performance of your workloads. Compute Optimizer also provides recent utilization metric data, in addition to projected utilization metric data for the recommendations, which you can use to evaluate which recommendation provides the best price-performance trade-off. The analysis of your usage patterns can help you decide when to move or resize your running resources, and still meet your performance and capacity requirements. For more information about Compute Optimizer, including the required permissions to use the service, see the Compute Optimizer User Guide.

Other APIs in the same category

Azure Machine Learning Model Management Service

azure.com
These APIs allow end users to manage Azure Machine Learning Models, Images, Profiles, and Services.

AWS Device Farm

Welcome to the AWS Device Farm API documentation, which contains APIs for: Testing on desktop browsers Device Farm makes it possible for you to test your web applications on desktop browsers using Selenium. The APIs for desktop browser testing contain TestGrid in their names. For more information, see Testing Web Applications on Selenium with Device Farm. Testing on real mobile devices Device Farm makes it possible for you to test apps on physical phones, tablets, and other devices in the cloud. For more information, see the Device Farm Developer Guide.

Amazon Mechanical Turk

Amazon Mechanical Turk API Reference

FinSpace Public API

The FinSpace APIs let you take actions inside the FinSpace environment.

Amazon EMR

Amazon EMR is a web service that makes it easier to process large amounts of data efficiently. Amazon EMR uses Hadoop processing combined with several Amazon Web Services services to do tasks such as web indexing, data mining, log file analysis, machine learning, scientific simulation, and data warehouse management.

AWS IoT Jobs Data Plane

AWS IoT Jobs is a service that allows you to define a set of jobs — remote operations that are sent to and executed on one or more devices connected to AWS IoT. For example, you can define a job that instructs a set of devices to download and install application or firmware updates, reboot, rotate certificates, or perform remote troubleshooting operations. To create a job, you make a job document which is a description of the remote operations to be performed, and you specify a list of targets that should perform the operations. The targets can be individual things, thing groups or both. AWS IoT Jobs sends a message to inform the targets that a job is available. The target starts the execution of the job by downloading the job document, performing the operations it specifies, and reporting its progress to AWS IoT. The Jobs service provides commands to track the progress of a job on a specific target and for all the targets of the job

Amazon Kinesis Video Streams Media

Amazon Detective

Detective uses machine learning and purpose-built visualizations to help you analyze and investigate security issues across your Amazon Web Services (AWS) workloads. Detective automatically extracts time-based events such as login attempts, API calls, and network traffic from AWS CloudTrail and Amazon Virtual Private Cloud (Amazon VPC) flow logs. It also extracts findings detected by Amazon GuardDuty. The Detective API primarily supports the creation and management of behavior graphs. A behavior graph contains the extracted data from a set of member accounts, and is created and managed by an administrator account. Every behavior graph is specific to a Region. You can only use the API to manage graphs that belong to the Region that is associated with the currently selected endpoint. A Detective administrator account can use the Detective API to do the following: Enable and disable Detective. Enabling Detective creates a new behavior graph. View the list of member accounts in a behavior graph. Add member accounts to a behavior graph. Remove member accounts from a behavior graph. A member account can use the Detective API to do the following: View the list of behavior graphs that they are invited to. Accept an invitation to contribute to a behavior graph. Decline an invitation to contribute to a behavior graph. Remove their account from a behavior graph. All API actions are logged as CloudTrail events. See Logging Detective API Calls with CloudTrail. We replaced the term "master account" with the term "administrator account." An administrator account is used to centrally manage multiple accounts. In the case of Detective, the administrator account manages the accounts in their behavior graph.

Amazon Lookout for Equipment

Amazon Lookout for Equipment is a machine learning service that uses advanced analytics to identify anomalies in machines from sensor data for use in predictive maintenance.

AWS Data Exchange

AWS Data Exchange is a service that makes it easy for AWS customers to exchange data in the cloud. You can use the AWS Data Exchange APIs to create, update, manage, and access file-based data set in the AWS Cloud. As a subscriber, you can view and access the data sets that you have an entitlement to through a subscription. You can use the APIS to download or copy your entitled data sets to Amazon S3 for use across a variety of AWS analytics and machine learning services. As a provider, you can create and manage your data sets that you would like to publish to a product. Being able to package and provide your data sets into products requires a few steps to determine eligibility. For more information, visit the AWS Data Exchange User Guide. A data set is a collection of data that can be changed or updated over time. Data sets can be updated using revisions, which represent a new version or incremental change to a data set. A revision contains one or more assets. An asset in AWS Data Exchange is a piece of data that can be stored as an Amazon S3 object. The asset can be a structured data file, an image file, or some other data file. Jobs are asynchronous import or export operations used to create or copy assets.

Elastic Load Balancing

Elastic Load Balancing A load balancer distributes incoming traffic across targets, such as your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered targets and ensures that it routes traffic only to healthy targets. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer. You configure a target group with a protocol and port number for connections from the load balancer to the targets, and with health check settings to be used when checking the health status of the targets. Elastic Load Balancing supports the following types of load balancers: Application Load Balancers, Network Load Balancers, Gateway Load Balancers, and Classic Load Balancers. This reference covers the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). For more information, see the Elastic Load Balancing User Guide. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds.

Amazon Lightsail

Amazon Lightsail is the easiest way to get started with Amazon Web Services (AWS) for developers who need to build websites or web applications. It includes everything you need to launch your project quickly - instances (virtual private servers), container services, storage buckets, managed databases, SSD-based block storage, static IP addresses, load balancers, content delivery network (CDN) distributions, DNS management of registered domains, and resource snapshots (backups) - for a low, predictable monthly price. You can manage your Lightsail resources using the Lightsail console, Lightsail API, AWS Command Line Interface (AWS CLI), or SDKs. For more information about Lightsail concepts and tasks, see the Amazon Lightsail Developer Guide. This API Reference provides detailed information about the actions, data types, parameters, and errors of the Lightsail service. For more information about the supported AWS Regions, endpoints, and service quotas of the Lightsail service, see Amazon Lightsail Endpoints and Quotas in the AWS General Reference.