Mock sample for your project: Amazon Kinesis Analytics API

Integrate with "Amazon Kinesis Analytics API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Kinesis Analytics

amazonaws.com

Version: 2018-05-23


Use this API in your project

Speed up your application development by using "Amazon Kinesis Analytics API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
It also improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Amazon Kinesis Data Analytics is a fully managed service that you can use to process and analyze streaming data using Java, SQL, or Scala. The service enables you to quickly author and run Java, SQL, or Scala code against streaming sources to perform time series analytics, feed real-time dashboards, and create real-time metrics.

Other APIs by amazonaws.com

Amazon Mobile Analytics

Amazon Mobile Analytics is a service for collecting, visualizing, and understanding app usage data at scale.

AWS App Mesh

App Mesh is a service mesh based on the Envoy proxy that makes it easy to monitor and control microservices. App Mesh standardizes how your microservices communicate, giving you end-to-end visibility and helping to ensure high availability for your applications. App Mesh gives you consistent visibility and network traffic controls for every microservice in an application. You can use App Mesh with Amazon Web Services Fargate, Amazon ECS, Amazon EKS, Kubernetes on Amazon Web Services, and Amazon EC2. App Mesh supports microservice applications that use service discovery naming for their components. For more information about service discovery on Amazon ECS, see Service Discovery in the Amazon Elastic Container Service Developer Guide. Kubernetes kube-dns and coredns are supported. For more information, see DNS for Services and Pods in the Kubernetes documentation.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

AWS Cost and Usage Report Service

The AWS Cost and Usage Report API enables you to programmatically create, query, and delete AWS Cost and Usage report definitions. AWS Cost and Usage reports track the monthly AWS costs and usage associated with your AWS account. The report contains line items for each unique combination of AWS product, usage type, and operation that your AWS account uses. You can configure the AWS Cost and Usage report to show only the data that you want, using the AWS Cost and Usage API. Service Endpoint The AWS Cost and Usage Report API provides the following endpoint: cur.us-east-1.amazonaws.com

AWS CloudHSM V2

For more information about AWS CloudHSM, see AWS CloudHSM and the AWS CloudHSM User Guide.

Amazon AppStream

Amazon AppStream 2.0 This is the Amazon AppStream 2.0 API Reference. This documentation provides descriptions and syntax for each of the actions and data types in AppStream 2.0. AppStream 2.0 is a fully managed, secure application streaming service that lets you stream desktop applications to users without rewriting applications. AppStream 2.0 manages the AWS resources that are required to host and run your applications, scales automatically, and provides access to your users on demand. You can call the AppStream 2.0 API operations by using an interface VPC endpoint (interface endpoint). For more information, see Access AppStream 2.0 API Operations and CLI Commands Through an Interface VPC Endpoint in the Amazon AppStream 2.0 Administration Guide. To learn more about AppStream 2.0, see the following resources: Amazon AppStream 2.0 product page Amazon AppStream 2.0 documentation

Amazon Cognito Identity Provider

Using the Amazon Cognito User Pools API, you can create a user pool to manage directories and users. You can authenticate a user to obtain tokens related to user identity and access policies. This API reference provides information about user pools in Amazon Cognito User Pools. For more information, see the Amazon Cognito Documentation.

AWS CloudTrail

CloudTrail This is the CloudTrail API Reference. It provides descriptions of actions, data types, common parameters, and common errors for CloudTrail. CloudTrail is a web service that records Amazon Web Services API calls for your Amazon Web Services account and delivers log files to an Amazon S3 bucket. The recorded information includes the identity of the user, the start time of the Amazon Web Services API call, the source IP address, the request parameters, and the response elements returned by the service. As an alternative to the API, you can use one of the Amazon Web Services SDKs, which consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .NET, iOS, Android, etc.). The SDKs provide programmatic access to CloudTrail. For example, the SDKs handle cryptographically signing requests, managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools to Build on Amazon Web Services. See the CloudTrail User Guide for information about the data that is included with each Amazon Web Services API call listed in the log files.

AWS Auto Scaling Plans

AWS Auto Scaling Use AWS Auto Scaling to create scaling plans for your applications to automatically scale your scalable AWS resources. API Summary You can use the AWS Auto Scaling service API to accomplish the following tasks: Create and manage scaling plans Define target tracking scaling policies to dynamically scale your resources based on utilization Scale Amazon EC2 Auto Scaling groups using predictive scaling and dynamic scaling to scale your Amazon EC2 capacity faster Set minimum and maximum capacity limits Retrieve information on existing scaling plans Access current forecast data and historical forecast data for up to 56 days previous To learn more about AWS Auto Scaling, including information about granting IAM users required permissions for AWS Auto Scaling actions, see the AWS Auto Scaling User Guide.

Amazon Appflow

Welcome to the Amazon AppFlow API reference. This guide is for developers who need detailed information about the Amazon AppFlow API operations, data types, and errors. Amazon AppFlow is a fully managed integration service that enables you to securely transfer data between software as a service (SaaS) applications like Salesforce, Marketo, Slack, and ServiceNow, and Amazon Web Services like Amazon S3 and Amazon Redshift. Use the following links to get started on the Amazon AppFlow API: Actions : An alphabetical list of all Amazon AppFlow API operations. Data types : An alphabetical list of all Amazon AppFlow data types. Common parameters : Parameters that all Query operations can use. Common errors : Client and server errors that all operations can return. If you're new to Amazon AppFlow, we recommend that you review the Amazon AppFlow User Guide. Amazon AppFlow API users can use vendor-specific mechanisms for OAuth, and include applicable OAuth attributes (such as auth-code and redirecturi) with the connector-specific ConnectorProfileProperties when creating a new connector profile using Amazon AppFlow API operations. For example, Salesforce users can refer to the Authorize Apps with OAuth documentation.

AWS CodeDeploy

AWS CodeDeploy AWS CodeDeploy is a deployment service that automates application deployments to Amazon EC2 instances, on-premises instances running in your own facility, serverless AWS Lambda functions, or applications in an Amazon ECS service. You can deploy a nearly unlimited variety of application content, such as an updated Lambda function, updated applications in an Amazon ECS service, code, web and configuration files, executables, packages, scripts, multimedia files, and so on. AWS CodeDeploy can deploy application content stored in Amazon S3 buckets, GitHub repositories, or Bitbucket repositories. You do not need to make changes to your existing code before you can use AWS CodeDeploy. AWS CodeDeploy makes it easier for you to rapidly release new features, helps you avoid downtime during application deployment, and handles the complexity of updating your applications, without many of the risks associated with error-prone manual deployments. AWS CodeDeploy Components Use the information in this guide to help you work with the following AWS CodeDeploy components: Application : A name that uniquely identifies the application you want to deploy. AWS CodeDeploy uses this name, which functions as a container, to ensure the correct combination of revision, deployment configuration, and deployment group are referenced during a deployment. Deployment group : A set of individual instances, CodeDeploy Lambda deployment configuration settings, or an Amazon ECS service and network details. A Lambda deployment group specifies how to route traffic to a new version of a Lambda function. An Amazon ECS deployment group specifies the service created in Amazon ECS to deploy, a load balancer, and a listener to reroute production traffic to an updated containerized application. An EC2/On-premises deployment group contains individually tagged instances, Amazon EC2 instances in Amazon EC2 Auto Scaling groups, or both. All deployment groups can specify optional trigger, alarm, and rollback settings. Deployment configuration : A set of deployment rules and deployment success and failure conditions used by AWS CodeDeploy during a deployment. Deployment : The process and the components used when updating a Lambda function, a containerized application in an Amazon ECS service, or of installing content on one or more instances. Application revisions : For an AWS Lambda deployment, this is an AppSpec file that specifies the Lambda function to be updated and one or more functions to validate deployment lifecycle events. For an Amazon ECS deployment, this is an AppSpec file that specifies the Amazon ECS task definition, container, and port where production traffic is rerouted. For an EC2/On-premises deployment, this is an archive file that contains source content—source code, webpages, executable files, and deployment scripts—along with an AppSpec file. Revisions are stored in Amazon S3 buckets or GitHub repositories. For Amazon S3, a revision is uniquely identified by its Amazon S3 object key and its ETag, version, or both. For GitHub, a revision is uniquely identified by its commit ID. This guide also contains information to help you get details about the instances in your deployments, to make on-premises instances available for AWS CodeDeploy deployments, to get details about a Lambda function deployment, and to get details about Amazon ECS service deployments. AWS CodeDeploy Information Resources AWS CodeDeploy User Guide AWS CodeDeploy API Reference Guide AWS CLI Reference for AWS CodeDeploy AWS CodeDeploy Developer Forum

Amazon Route 53

Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service.

Other APIs in the same category

VM Insights Onboarding

azure.com
API to manage VM Insights Onboarding

Azure Stack Azure Bridge Client

azure.com

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for favorites.

AWS IoT Core Device Advisor

AWS IoT Core Device Advisor is a cloud-based, fully managed test capability for validating IoT devices during device software development. Device Advisor provides pre-built tests that you can use to validate IoT devices for reliable and secure connectivity with AWS IoT Core before deploying devices to production. By using Device Advisor, you can confirm that your devices can connect to AWS IoT Core, follow security best practices and, if applicable, receive software updates from IoT Device Management. You can also download signed qualification reports to submit to the AWS Partner Network to get your device qualified for the AWS Partner Device Catalog without the need to send your device in and wait for it to be tested.

AutomationManagement

azure.com

AWS Well-Architected Tool

AWS Well-Architected Tool This is the AWS Well-Architected Tool API Reference. The AWS Well-Architected Tool API provides programmatic access to the AWS Well-Architected Tool in the AWS Management Console. For information about the AWS Well-Architected Tool, see the AWS Well-Architected Tool User Guide.

AWS IoT Data Plane

IoT data IoT data enables secure, bi-directional communication between Internet-connected things (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. It implements a broker for applications and things to publish messages over HTTP (Publish) and retrieve, update, and delete shadows. A shadow is a persistent representation of your things and their state in the Amazon Web Services cloud. Find the endpoint address for actions in IoT data by running this CLI command: aws iot describe-endpoint --endpoint-type iot:Data-ATS The service name used by Amazon Web ServicesSignature Version 4 to sign requests is: iotdevicegateway.

AWS MediaConnect

API for AWS Elemental MediaConnect

Application Migration Service

The Application Migration Service service.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on NamedValue entity associated with your Azure API Management deployment. API Management policies are a powerful capability of the system that allow the publisher to change the behavior of the API through configuration. Policies are a collection of statements that are executed sequentially on the request or response of an API. Policy statements can be constructed using literal text values, policy expressions, and NamedValues. Each API Management service instance has a NamedValues collection of key/value pairs that are global to the service instance. These NamedValues can be used to manage constant string values across all API configuration and policies.

Amazon Kinesis Analytics

Amazon Kinesis Data Analytics is a fully managed service that you can use to process and analyze streaming data using Java, SQL, or Scala. The service enables you to quickly author and run Java, SQL, or Scala code against streaming sources to perform time series analytics, feed real-time dashboards, and create real-time metrics.

AutomationManagement

azure.com