Mock sample for your project: Amazon Kinesis Analytics API

Integrate with "Amazon Kinesis Analytics API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Kinesis Analytics

amazonaws.com

Version: 2018-05-23


Use this API in your project

Speed up your application development by using "Amazon Kinesis Analytics API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
It also improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Amazon Kinesis Data Analytics is a fully managed service that you can use to process and analyze streaming data using Java, SQL, or Scala. The service enables you to quickly author and run Java, SQL, or Scala code against streaming sources to perform time series analytics, feed real-time dashboards, and create real-time metrics.

Other APIs by amazonaws.com

Amazon Kinesis Video Streams Media

Amazon Lex Model Building Service

Amazon Lex Build-Time Actions Amazon Lex is an AWS service for building conversational voice and text interfaces. Use these actions to create, update, and delete conversational bots for new and existing client applications.

Amazon Translate

Provides translation between one source language and another of the same set of languages.

Amazon Managed Blockchain

Amazon Managed Blockchain is a fully managed service for creating and managing blockchain networks using open-source frameworks. Blockchain allows you to build applications where multiple parties can securely and transparently run transactions and share data without the need for a trusted, central authority. Managed Blockchain supports the Hyperledger Fabric and Ethereum open-source frameworks. Because of fundamental differences between the frameworks, some API actions or data types may only apply in the context of one framework and not the other. For example, actions related to Hyperledger Fabric network members such as CreateMember and DeleteMember do not apply to Ethereum. The description for each action indicates the framework or frameworks to which it applies. Data types and properties that apply only in the context of a particular framework are similarly indicated.

AWS MediaTailor

Use the AWS Elemental MediaTailor SDKs and CLI to configure scalable ad insertion and linear channels. With MediaTailor, you can assemble existing content into a linear stream and serve targeted ads to viewers while maintaining broadcast quality in over-the-top (OTT) video applications. For information about using the service, including detailed information about the settings covered in this guide, see the AWS Elemental MediaTailor User Guide. Through the SDKs and the CLI you manage AWS Elemental MediaTailor configurations and channels the same as you do through the console. For example, you specify ad insertion behavior and mapping information for the origin server and the ad decision server (ADS).

Amazon Mechanical Turk

Amazon Mechanical Turk API Reference

AWS Network Manager

Transit Gateway Network Manager (Network Manager) enables you to create a global network, in which you can monitor your AWS and on-premises networks that are built around transit gateways. The Network Manager APIs are supported in the US West (Oregon) Region only. You must specify the us-west-2 Region in all requests made to Network Manager.

AWS Proton

This is the AWS Proton Service API Reference. It provides descriptions, syntax and usage examples for each of the actions and data types for the AWS Proton service. The documentation for each action shows the Query API request parameters and the XML response. Alternatively, you can use the AWS CLI to access an API. For more information, see the AWS Command Line Interface User Guide. The AWS Proton service is a two-pronged automation framework. Administrators create service templates to provide standardized infrastructure and deployment tooling for serverless and container based applications. Developers, in turn, select from the available service templates to automate their application or service deployments. Because administrators define the infrastructure and tooling that AWS Proton deploys and manages, they need permissions to use all of the listed API operations. When developers select a specific infrastructure and tooling set, AWS Proton deploys their applications. To monitor their applications that are running on AWS Proton, developers need permissions to the service create, list, update and delete API operations and the service instance list and update API operations. To learn more about AWS Proton administration, see the AWS Proton Administrator Guide. To learn more about deploying serverless and containerized applications on AWS Proton, see the AWS Proton User Guide. Ensuring Idempotency When you make a mutating API request, the request typically returns a result before the asynchronous workflows of the operation are complete. Operations might also time out or encounter other server issues before they're complete, even if the request already returned a result. This might make it difficult to determine whether the request succeeded. Moreover, you might need to retry the request multiple times to ensure that the operation completes successfully. However, if the original request and the subsequent retries are successful, the operation occurs multiple times. This means that you might create more resources than you intended. Idempotency ensures that an API request action completes no more than one time. With an idempotent request, if the original request action completes successfully, any subsequent retries complete successfully without performing any further actions. However, the result might contain updated information, such as the current creation status. The following lists of APIs are grouped according to methods that ensure idempotency. Idempotent create APIs with a client token The API actions in this list support idempotency with the use of a client token. The corresponding AWS CLI commands also support idempotency using a client token. A client token is a unique, case-sensitive string of up to 64 ASCII characters. To make an idempotent API request using one of these actions, specify a client token in the request. We recommend that you don't reuse the same client token for other API requests. If you don’t provide a client token for these APIs, a default client token is automatically provided by SDKs. Given a request action that has succeeded: If you retry the request using the same client token and the same parameters, the retry succeeds without performing any further actions other than returning the original resource detail data in the response. If you retry the request using the same client token, but one or more of the parameters are different, the retry throws a ValidationException with an IdempotentParameterMismatch error. Client tokens expire eight hours after a request is made. If you retry the request with the expired token, a new resource is created. If the original resource is deleted and you retry the request, a new resource is created. Idempotent create APIs with a client token: CreateEnvironmentTemplateVersion CreateServiceTemplateVersion CreateEnvironmentAccountConnection Idempotent create APIs Given a request action that has succeeded: If you retry the request with an API from this group, and the original resource hasn't been modified, the retry succeeds without performing any further actions other than returning the original resource detail data in the response. If the original resource has been modified, the retry throws a ConflictException. If you retry with different input parameters, the retry throws a ValidationException with an IdempotentParameterMismatch error. Idempotent create APIs: CreateEnvironmentTemplate CreateServiceTemplate CreateEnvironment CreateService Idempotent delete APIs Given a request action that has succeeded: When you retry the request with an API from this group and the resource was deleted, its metadata is returned in the response. If you retry and the resource doesn't exist, the response is empty. In both cases, the retry succeeds. Idempotent delete APIs: DeleteEnvironmentTemplate DeleteEnvironmentTemplateVersion DeleteServiceTemplate DeleteServiceTemplateVersion DeleteEnvironmentAccountConnection Asynchronous idempotent delete APIs Given a request action that has succeeded: If you retry the request with an API from this group, if the original request delete operation status is DELETEINPROGRESS, the retry returns the resource detail data in the response without performing any further actions. If the original request delete operation is complete, a retry returns an empty response. Asynchronous idempotent delete APIs: DeleteEnvironment DeleteService

Amazon Redshift

Amazon Redshift Overview This is an interface reference for Amazon Redshift. It contains documentation for one of the programming or command line interfaces you can use to manage Amazon Redshift clusters. Note that Amazon Redshift is asynchronous, which means that some interfaces may require techniques, such as polling or asynchronous callback handlers, to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a change is applied immediately, on the next instance reboot, or during the next maintenance window. For a summary of the Amazon Redshift cluster management interfaces, go to Using the Amazon Redshift Management Interfaces. Amazon Redshift manages all the work of setting up, operating, and scaling a data warehouse: provisioning capacity, monitoring and backing up the cluster, and applying patches and upgrades to the Amazon Redshift engine. You can focus on using your data to acquire new insights for your business and customers. If you are a first-time user of Amazon Redshift, we recommend that you begin by reading the Amazon Redshift Getting Started Guide. If you are a database developer, the Amazon Redshift Database Developer Guide explains how to design, build, query, and maintain the databases that make up your data warehouse.

Amazon Polly

Amazon Polly is a web service that makes it easy to synthesize speech from text. The Amazon Polly service provides API operations for synthesizing high-quality speech from plain text and Speech Synthesis Markup Language (SSML), along with managing pronunciations lexicons that enable you to get the best results for your application domain.

AWS RDS DataService

Amazon RDS Data Service Amazon RDS provides an HTTP endpoint to run SQL statements on an Amazon Aurora Serverless DB cluster. To run these statements, you work with the Data Service API. For more information about the Data Service API, see Using the Data API for Aurora Serverless in the Amazon Aurora User Guide.

Amazon Kinesis

Amazon Kinesis Data Streams Service API Reference Amazon Kinesis Data Streams is a managed service that scales elastically for real-time processing of streaming big data.

Other APIs in the same category

ManagedServicesClient

azure.com
Specification for ManagedServices.

NetworkAdminManagementClient

azure.com
Network admin operation endpoints and objects.

AWS Systems Manager Incident Manager

AWS Systems Manager Incident Manager is an incident management console designed to help users mitigate and recover from incidents affecting their AWS-hosted applications. An incident is any unplanned interruption or reduction in quality of services. Incident Manager increases incident resolution by notifying responders of impact, highlighting relevant troubleshooting data, and providing collaboration tools to get services back up and running. To achieve the primary goal of reducing the time-to-resolution of critical incidents, Incident Manager automates response plans and enables responder team escalation.

AWS Single Sign-On

AWS Single Sign-On Portal is a web service that makes it easy for you to assign user access to AWS SSO resources such as the user portal. Users can get AWS account applications and roles assigned to them and get federated into the application. For general information about AWS SSO, see What is AWS Single Sign-On? in the AWS SSO User Guide. This API reference guide describes the AWS SSO Portal operations that you can call programatically and includes detailed information on data types and errors. AWS provides SDKs that consist of libraries and sample code for various programming languages and platforms, such as Java, Ruby, .Net, iOS, or Android. The SDKs provide a convenient way to create programmatic access to AWS SSO and other AWS services. For more information about the AWS SDKs, including how to download and install them, see Tools for Amazon Web Services.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Cache entity in your Azure API Management deployment. Azure API Management also allows for caching responses in an external Azure Cache for Redis. For more information refer to External Redis Cache in ApiManagement.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Identity Provider entity associated with your Azure API Management deployment. Setting up an external Identity Provider for authentication can help you manage the developer portal logins using the OAuth2 flow.

Amazon ElastiCache

Amazon ElastiCache Amazon ElastiCache is a web service that makes it easier to set up, operate, and scale a distributed cache in the cloud. With ElastiCache, customers get all of the benefits of a high-performance, in-memory cache with less of the administrative burden involved in launching and managing a distributed cache. The service makes setup, scaling, and cluster failure handling much simpler than in a self-managed cache deployment. In addition, through integration with Amazon CloudWatch, customers get enhanced visibility into the key performance statistics associated with their cache and can receive alarms if a part of their cache runs hot.

Amazon Kinesis Firehose

Amazon Kinesis Data Firehose API Reference Amazon Kinesis Data Firehose is a fully managed service that delivers real-time streaming data to destinations such as Amazon Simple Storage Service (Amazon S3), Amazon Elasticsearch Service (Amazon ES), Amazon Redshift, and Splunk.

AWS Batch

Batch Using Batch, you can run batch computing workloads on the Cloud. Batch computing is a common means for developers, scientists, and engineers to access large amounts of compute resources. Batch uses the advantages of this computing workload to remove the undifferentiated heavy lifting of configuring and managing required infrastructure. At the same time, it also adopts a familiar batch computing software approach. Given these advantages, Batch can help you to efficiently provision resources in response to jobs submitted, thus effectively helping you to eliminate capacity constraints, reduce compute costs, and deliver your results more quickly. As a fully managed service, Batch can run batch computing workloads of any scale. Batch automatically provisions compute resources and optimizes workload distribution based on the quantity and scale of your specific workloads. With Batch, there's no need to install or manage batch computing software. This means that you can focus your time and energy on analyzing results and solving your specific problems.

CodeArtifact

AWS CodeArtifact is a fully managed artifact repository compatible with language-native package managers and build tools such as npm, Apache Maven, and pip. You can use CodeArtifact to share packages with development teams and pull packages. Packages can be pulled from both public and CodeArtifact repositories. You can also create an upstream relationship between a CodeArtifact repository and another repository, which effectively merges their contents from the point of view of a package manager client. AWS CodeArtifact Components Use the information in this guide to help you work with the following CodeArtifact components: Repository : A CodeArtifact repository contains a set of package versions, each of which maps to a set of assets, or files. Repositories are polyglot, so a single repository can contain packages of any supported type. Each repository exposes endpoints for fetching and publishing packages using tools like the npm CLI, the Maven CLI ( mvn ), and pip . Domain : Repositories are aggregated into a higher-level entity known as a domain. All package assets and metadata are stored in the domain, but are consumed through repositories. A given package asset, such as a Maven JAR file, is stored once per domain, no matter how many repositories it's present in. All of the assets and metadata in a domain are encrypted with the same customer master key (CMK) stored in AWS Key Management Service (AWS KMS). Each repository is a member of a single domain and can't be moved to a different domain. The domain allows organizational policy to be applied across multiple repositories, such as which accounts can access repositories in the domain, and which public repositories can be used as sources of packages. Although an organization can have multiple domains, we recommend a single production domain that contains all published artifacts so that teams can find and share packages across their organization. Package : A package is a bundle of software and the metadata required to resolve dependencies and install the software. CodeArtifact supports npm, PyPI, and Maven package formats. In CodeArtifact, a package consists of: A name (for example, webpack is the name of a popular npm package) An optional namespace (for example, @types in @types/node) A set of versions (for example, 1.0.0, 1.0.1, 1.0.2, etc.) Package-level metadata (for example, npm tags) Package version : A version of a package, such as @types/node 12.6.9. The version number format and semantics vary for different package formats. For example, npm package versions must conform to the Semantic Versioning specification. In CodeArtifact, a package version consists of the version identifier, metadata at the package version level, and a set of assets. Upstream repository : One repository is upstream of another when the package versions in it can be accessed from the repository endpoint of the downstream repository, effectively merging the contents of the two repositories from the point of view of a client. CodeArtifact allows creating an upstream relationship between two repositories. Asset : An individual file stored in CodeArtifact associated with a package version, such as an npm.tgz file or Maven POM and JAR files. CodeArtifact supports these operations: AssociateExternalConnection : Adds an existing external connection to a repository. CopyPackageVersions : Copies package versions from one repository to another repository in the same domain. CreateDomain : Creates a domain CreateRepository : Creates a CodeArtifact repository in a domain. DeleteDomain : Deletes a domain. You cannot delete a domain that contains repositories. DeleteDomainPermissionsPolicy : Deletes the resource policy that is set on a domain. DeletePackageVersions : Deletes versions of a package. After a package has been deleted, it can be republished, but its assets and metadata cannot be restored because they have been permanently removed from storage. DeleteRepository : Deletes a repository. DeleteRepositoryPermissionsPolicy : Deletes the resource policy that is set on a repository. DescribeDomain : Returns a DomainDescription object that contains information about the requested domain. DescribePackageVersion : Returns a PackageVersionDescription object that contains details about a package version. DescribeRepository : Returns a RepositoryDescription object that contains detailed information about the requested repository. DisposePackageVersions : Disposes versions of a package. A package version with the status Disposed cannot be restored because they have been permanently removed from storage. DisassociateExternalConnection : Removes an existing external connection from a repository. GetAuthorizationToken : Generates a temporary authorization token for accessing repositories in the domain. The token expires the authorization period has passed. The default authorization period is 12 hours and can be customized to any length with a maximum of 12 hours. GetDomainPermissionsPolicy : Returns the policy of a resource that is attached to the specified domain. GetPackageVersionAsset : Returns the contents of an asset that is in a package version. GetPackageVersionReadme : Gets the readme file or descriptive text for a package version. GetRepositoryEndpoint : Returns the endpoint of a repository for a specific package format. A repository has one endpoint for each package format: npm pypi maven GetRepositoryPermissionsPolicy : Returns the resource policy that is set on a repository. ListDomains : Returns a list of DomainSummary objects. Each returned DomainSummary object contains information about a domain. ListPackages : Lists the packages in a repository. ListPackageVersionAssets : Lists the assets for a given package version. ListPackageVersionDependencies : Returns a list of the direct dependencies for a package version. ListPackageVersions : Returns a list of package versions for a specified package in a repository. ListRepositories : Returns a list of repositories owned by the AWS account that called this method. ListRepositoriesInDomain : Returns a list of the repositories in a domain. PutDomainPermissionsPolicy : Attaches a resource policy to a domain. PutRepositoryPermissionsPolicy : Sets the resource policy on a repository that specifies permissions to access it. UpdatePackageVersionsStatus : Updates the status of one or more versions of a package. UpdateRepository : Updates the properties of a repository.

Amazon WorkLink

Amazon WorkLink is a cloud-based service that provides secure access to internal websites and web apps from iOS and Android phones. In a single step, your users, such as employees, can access internal websites as efficiently as they access any other public website. They enter a URL in their web browser, or choose a link to an internal website in an email. Amazon WorkLink authenticates the user's access and securely renders authorized internal web content in a secure rendering service in the AWS cloud. Amazon WorkLink doesn't download or store any internal web content on mobile devices.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Group entity in your Azure API Management deployment. Groups are used to manage the visibility of products to developers. Each API Management service instance comes with the following immutable system groups whose membership is automatically managed by API Management. - Administrators - Azure subscription administrators are members of this group. - Developers - Authenticated developer portal users fall into this group. - Guests - Unauthenticated developer portal users are placed into this group. In addition to these system groups, administrators can create custom groups or leverage external groups in associated Azure Active Directory tenants. Custom and external groups can be used alongside system groups in giving developers visibility and access to API products. For example, you could create one custom group for developers affiliated with a specific partner organization and allow them access to the APIs from a product containing relevant APIs only. A user can be a member of more than one group.