Mock sample for your project: Amazon Kinesis Analytics API

Integrate with "Amazon Kinesis Analytics API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Kinesis Analytics

amazonaws.com

Version: 2015-08-14


Use this API in your project

Start working with "Amazon Kinesis Analytics API" right away by using this ready-to-use mock sample. API mocking can greatly speed up your application development by removing all the tedious tasks or issues: API key provisioning, account creation, unplanned downtime, etc.
It also helps reduce your dependency on third-party APIs and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Amazon Kinesis Analytics Overview This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which only supports SQL applications. Version 2 of the API supports SQL and Java applications. For more information about version 2, see Amazon Kinesis Data Analytics API V2 Documentation. This is the Amazon Kinesis Analytics v1 API Reference. The Amazon Kinesis Analytics Developer Guide provides additional information.

Other APIs by amazonaws.com

Service Quotas

With Service Quotas, you can view and manage your quotas easily as your AWS workloads grow. Quotas, also referred to as limits, are the maximum number of resources that you can create in your AWS account. For more information, see the Service Quotas User Guide.

AWS IoT 1-Click Projects Service

The AWS IoT 1-Click Projects API Reference

Amazon Cognito Identity

Amazon Cognito Federated Identities Amazon Cognito Federated Identities is a web service that delivers scoped temporary credentials to mobile devices and other untrusted environments. It uniquely identifies a device and supplies the user with a consistent identity over the lifetime of an application. Using Amazon Cognito Federated Identities, you can enable authentication with one or more third-party identity providers (Facebook, Google, or Login with Amazon) or an Amazon Cognito user pool, and you can also choose to support unauthenticated access from your app. Cognito delivers a unique identifier for each user and acts as an OpenID token provider trusted by AWS Security Token Service (STS) to access temporary, limited-privilege AWS credentials. For a description of the authentication flow from the Amazon Cognito Developer Guide see Authentication Flow. For more information see Amazon Cognito Federated Identities.

AWS AppSync

AppSync provides API actions for creating and interacting with data sources using GraphQL from your application.

AWS Amplify

Amplify enables developers to develop and deploy cloud-powered mobile and web apps. The Amplify Console provides a continuous delivery and hosting service for web applications. For more information, see the Amplify Console User Guide. The Amplify Framework is a comprehensive set of SDKs, libraries, tools, and documentation for client app development. For more information, see the Amplify Framework.

Amazon DevOps Guru

Amazon DevOps Guru is a fully managed service that helps you identify anomalous behavior in business critical operational applications. You specify the AWS resources that you want DevOps Guru to cover, then the Amazon CloudWatch metrics and AWS CloudTrail events related to those resources are analyzed. When anomalous behavior is detected, DevOps Guru creates an insight that includes recommendations, related events, and related metrics that can help you improve your operational applications. For more information, see What is Amazon DevOps Guru. You can specify 1 or 2 Amazon Simple Notification Service topics so you are notified every time a new insight is created. You can also enable DevOps Guru to generate an OpsItem in AWS Systems Manager for each insight to help you manage and track your work addressing insights. To learn about the DevOps Guru workflow, see How DevOps Guru works. To learn about DevOps Guru concepts, see Concepts in DevOps Guru.

AWS CodeStar

AWS CodeStar This is the API reference for AWS CodeStar. This reference provides descriptions of the operations and data types for the AWS CodeStar API along with usage examples. You can use the AWS CodeStar API to work with: Projects and their resources, by calling the following: DeleteProject, which deletes a project. DescribeProject, which lists the attributes of a project. ListProjects, which lists all projects associated with your AWS account. ListResources, which lists the resources associated with a project. ListTagsForProject, which lists the tags associated with a project. TagProject, which adds tags to a project. UntagProject, which removes tags from a project. UpdateProject, which updates the attributes of a project. Teams and team members, by calling the following: AssociateTeamMember, which adds an IAM user to the team for a project. DisassociateTeamMember, which removes an IAM user from the team for a project. ListTeamMembers, which lists all the IAM users in the team for a project, including their roles and attributes. UpdateTeamMember, which updates a team member's attributes in a project. Users, by calling the following: CreateUserProfile, which creates a user profile that contains data associated with the user across all projects. DeleteUserProfile, which deletes all user profile information across all projects. DescribeUserProfile, which describes the profile of a user. ListUserProfiles, which lists all user profiles. UpdateUserProfile, which updates the profile for a user.

Amazon Cognito Identity Provider

Using the Amazon Cognito User Pools API, you can create a user pool to manage directories and users. You can authenticate a user to obtain tokens related to user identity and access policies. This API reference provides information about user pools in Amazon Cognito User Pools. For more information, see the Amazon Cognito Documentation.

Amazon CodeGuru Profiler

This section provides documentation for the Amazon CodeGuru Profiler API operations. Amazon CodeGuru Profiler collects runtime performance data from your live applications, and provides recommendations that can help you fine-tune your application performance. Using machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of code and suggest ways you can improve efficiency and remove CPU bottlenecks. Amazon CodeGuru Profiler provides different visualizations of profiling data to help you identify what code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU utilization. Amazon CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM) languages and Python. While CodeGuru Profiler supports both visualizations and recommendations for applications written in Java, it can also generate visualizations and a subset of recommendations for applications written in other JVM languages and Python. For more information, see What is Amazon CodeGuru Profiler in the Amazon CodeGuru Profiler User Guide.

AWS Comprehend Medical

Amazon Comprehend Medical extracts structured information from unstructured clinical text. Use these actions to gain insight in your documents.

AWS Migration Hub

The AWS Migration Hub API methods help to obtain server and application migration status and integrate your resource-specific migration tool by providing a programmatic interface to Migration Hub. Remember that you must set your AWS Migration Hub home region before you call any of these APIs, or a HomeRegionNotSetException error will be returned. Also, you must make the API calls while in your home region.

AWS CloudFormation

AWS CloudFormation CloudFormation allows you to create and manage Amazon Web Services infrastructure deployments predictably and repeatedly. You can use CloudFormation to leverage Amazon Web Services products, such as Amazon Elastic Compute Cloud, Amazon Elastic Block Store, Amazon Simple Notification Service, Elastic Load Balancing, and Auto Scaling to build highly-reliable, highly scalable, cost-effective applications without creating or configuring the underlying Amazon Web Services infrastructure. With CloudFormation, you declare all of your resources and dependencies in a template file. The template defines a collection of resources as a single unit called a stack. CloudFormation creates and deletes all member resources of the stack together and manages all dependencies between the resources for you. For more information about CloudFormation, see the CloudFormation Product Page. CloudFormation makes use of other Amazon Web Services products. If you need additional technical information about a specific Amazon Web Services product, you can find the product's technical documentation at docs.aws.amazon.com .

Other APIs in the same category

AzureBridgeAdminClient

azure.com
AzureBridge Admin Client.

EventHub2018PreviewManagementClient

azure.com
Azure Event Hubs client for managing Event Hubs Cluster, IPFilter Rules and VirtualNetworkRules resources.

AWS Audit Manager

Welcome to the Audit Manager API reference. This guide is for developers who need detailed information about the Audit Manager API operations, data types, and errors. Audit Manager is a service that provides automated evidence collection so that you can continuously audit your Amazon Web Services usage, and assess the effectiveness of your controls to better manage risk and simplify compliance. Audit Manager provides pre-built frameworks that structure and automate assessments for a given compliance standard. Frameworks include a pre-built collection of controls with descriptions and testing procedures, which are grouped according to the requirements of the specified compliance standard or regulation. You can also customize frameworks and controls to support internal audits with unique requirements. Use the following links to get started with the Audit Manager API: Actions : An alphabetical list of all Audit Manager API operations. Data types : An alphabetical list of all Audit Manager data types. Common parameters : Parameters that all Query operations can use. Common errors : Client and server errors that all operations can return. If you're new to Audit Manager, we recommend that you review the Audit Manager User Guide.

AWS Resource Groups

AWS Resource Groups AWS Resource Groups lets you organize AWS resources such as Amazon EC2 instances, Amazon Relational Database Service databases, and Amazon S3 buckets into groups using criteria that you define as tags. A resource group is a collection of resources that match the resource types specified in a query, and share one or more tags or portions of tags. You can create a group of resources based on their roles in your cloud infrastructure, lifecycle stages, regions, application layers, or virtually any criteria. Resource Groups enable you to automate management tasks, such as those in AWS Systems Manager Automation documents, on tag-related resources in AWS Systems Manager. Groups of tagged resources also let you quickly view a custom console in AWS Systems Manager that shows AWS Config compliance and other monitoring data about member resources. To create a resource group, build a resource query, and specify tags that identify the criteria that members of the group have in common. Tags are key-value pairs. For more information about Resource Groups, see the AWS Resource Groups User Guide. AWS Resource Groups uses a REST-compliant API that you can use to perform the following types of operations. Create, Read, Update, and Delete (CRUD) operations on resource groups and resource query entities Applying, editing, and removing tags from resource groups Resolving resource group member ARNs so they can be returned as search results Getting data about resources that are members of a group Searching AWS resources based on a resource query

AWS Service Catalog App Registry

Amazon Web Services Service Catalog AppRegistry enables organizations to understand the application context of their Amazon Web Services resources. AppRegistry provides a repository of your applications, their resources, and the application metadata that you use within your enterprise.

Amazon Kinesis

Amazon Kinesis Data Streams Service API Reference Amazon Kinesis Data Streams is a managed service that scales elastically for real-time processing of streaming big data.
IoT IoT provides secure, bi-directional communication between Internet-connected devices (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. You can discover your custom IoT-Data endpoint to communicate with, configure rules for data processing and integration with other services, organize resources associated with each device (Registry), configure logging, and create and manage policies and credentials to authenticate devices. The service endpoints that expose this API are listed in Amazon Web Services IoT Core Endpoints and Quotas. You must use the endpoint for the region that has the resources you want to access. The service name used by Amazon Web Services Signature Version 4 to sign the request is: execute-api. For more information about how IoT works, see the Developer Guide. For information about how to use the credentials provider for IoT, see Authorizing Direct Calls to Amazon Web Services Services.

AWS Data Pipeline

AWS Data Pipeline configures and manages a data-driven workflow called a pipeline. AWS Data Pipeline handles the details of scheduling and ensuring that data dependencies are met so that your application can focus on processing the data. AWS Data Pipeline provides a JAR implementation of a task runner called AWS Data Pipeline Task Runner. AWS Data Pipeline Task Runner provides logic for common data management scenarios, such as performing database queries and running data analysis using Amazon Elastic MapReduce (Amazon EMR). You can use AWS Data Pipeline Task Runner as your task runner, or you can write your own task runner to provide custom data management. AWS Data Pipeline implements two main sets of functionality. Use the first set to create a pipeline and define data sources, schedules, dependencies, and the transforms to be performed on the data. Use the second set in your task runner application to receive the next task ready for processing. The logic for performing the task, such as querying the data, running data analysis, or converting the data from one format to another, is contained within the task runner. The task runner performs the task assigned to it by the web service, reporting progress to the web service as it does so. When the task is done, the task runner reports the final success or failure of the task to the web service.

Amazon Macie 2

Amazon Macie is a fully managed data security and data privacy service that uses machine learning and pattern matching to discover and protect your sensitive data in AWS. Macie automates the discovery of sensitive data, such as PII and intellectual property, to provide you with insight into the data that your organization stores in AWS. Macie also provides an inventory of your Amazon S3 buckets, which it continually monitors for you. If Macie detects sensitive data or potential data access issues, it generates detailed findings for you to review and act upon as necessary.

Amazon Kinesis Analytics

Amazon Kinesis Data Analytics is a fully managed service that you can use to process and analyze streaming data using Java, SQL, or Scala. The service enables you to quickly author and run Java, SQL, or Scala code against streaming sources to perform time series analytics, feed real-time dashboards, and create real-time metrics.

Amazon Neptune

Amazon Neptune Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. The core of Amazon Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with milliseconds latency. Amazon Neptune supports popular graph models Property Graph and W3C's RDF, and their respective query languages Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune powers graph use cases such as recommendation engines, fraud detection, knowledge graphs, drug discovery, and network security. This interface reference for Amazon Neptune contains documentation for a programming or command line interface you can use to manage Amazon Neptune. Note that Amazon Neptune is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide.

Amazon Kinesis Video Streams