Mock sample for your project: AWS IoT Analytics API

Integrate with "AWS IoT Analytics API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS IoT Analytics

amazonaws.com

Version: 2017-11-27


Use this API in your project

Integrate third-party APIs faster by using "AWS IoT Analytics API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
Improve your integration tests by mocking third-party APIs and cover more edge cases: slow response time, random failures, etc.

Description

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

Other APIs by amazonaws.com

Amazon Route 53

Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service.

Redshift Data API Service

You can use the Amazon Redshift Data API to run queries on Amazon Redshift tables. You can run SQL statements, which are committed if the statement succeeds. For more information about the Amazon Redshift Data API, see Using the Amazon Redshift Data API in the Amazon Redshift Cluster Management Guide.

AWSMarketplace Metering

AWS Marketplace Metering Service This reference provides descriptions of the low-level AWS Marketplace Metering Service API. AWS Marketplace sellers can use this API to submit usage data for custom usage dimensions. For information on the permissions you need to use this API, see AWS Marketing metering and entitlement API permissions in the AWS Marketplace Seller Guide. Submitting Metering Records MeterUsage - Submits the metering record for a Marketplace product. MeterUsage is called from an EC2 instance or a container running on EKS or ECS. BatchMeterUsage - Submits the metering record for a set of customers. BatchMeterUsage is called from a software-as-a-service (SaaS) application. Accepting New Customers ResolveCustomer - Called by a SaaS application during the registration process. When a buyer visits your website during the registration process, the buyer submits a Registration Token through the browser. The Registration Token is resolved through this API to obtain a CustomerIdentifier and Product Code. Entitlement and Metering for Paid Container Products Paid container software products sold through AWS Marketplace must integrate with the AWS Marketplace Metering Service and call the RegisterUsage operation for software entitlement and metering. Free and BYOL products for Amazon ECS or Amazon EKS aren't required to call RegisterUsage, but you can do so if you want to receive usage data in your seller reports. For more information on using the RegisterUsage operation, see Container-Based Products. BatchMeterUsage API calls are captured by AWS CloudTrail. You can use Cloudtrail to verify that the SaaS metering records that you sent are accurate by searching for records with the eventName of BatchMeterUsage. You can also use CloudTrail to audit records over time. For more information, see the AWS CloudTrail User Guide .

AWS Elemental MediaPackage VOD

AWS Elemental MediaPackage VOD

Application Migration Service

The Application Migration Service service.

Amazon Kinesis Video Streams Archived Media

Amazon Kinesis Video Streams Media

AWS Elemental MediaConvert

AWS Elemental MediaConvert

Amazon Lightsail

Amazon Lightsail is the easiest way to get started with Amazon Web Services (AWS) for developers who need to build websites or web applications. It includes everything you need to launch your project quickly - instances (virtual private servers), container services, storage buckets, managed databases, SSD-based block storage, static IP addresses, load balancers, content delivery network (CDN) distributions, DNS management of registered domains, and resource snapshots (backups) - for a low, predictable monthly price. You can manage your Lightsail resources using the Lightsail console, Lightsail API, AWS Command Line Interface (AWS CLI), or SDKs. For more information about Lightsail concepts and tasks, see the Amazon Lightsail Developer Guide. This API Reference provides detailed information about the actions, data types, parameters, and errors of the Lightsail service. For more information about the supported AWS Regions, endpoints, and service quotas of the Lightsail service, see Amazon Lightsail Endpoints and Quotas in the AWS General Reference.

Amazon Lex Model Building Service

Amazon Lex Build-Time Actions Amazon Lex is an AWS service for building conversational voice and text interfaces. Use these actions to create, update, and delete conversational bots for new and existing client applications.

Amazon Lookout for Metrics

This is the Amazon Lookout for Metrics API Reference. For an introduction to the service with tutorials for getting started, visit Amazon Lookout for Metrics Developer Guide.

Amazon Macie

Amazon Macie Classic Amazon Macie Classic is a security service that uses machine learning to automatically discover, classify, and protect sensitive data in AWS. Macie Classic recognizes sensitive data such as personally identifiable information (PII) or intellectual property, and provides you with dashboards and alerts that give visibility into how this data is being accessed or moved. For more information, see the Amazon Macie Classic User Guide.

Other APIs in the same category

Security Center

azure.com
API spec for Microsoft.Security (Azure Security Center) resource provider

HDInsightManagementClient

azure.com
The HDInsight Management Client.

Ink Recognizer Client

azure.com
The service is used to perform ink layout and recognition of written words and shapes. Ink strokes passed to the service are recognized and organized into recognition results in the response

ContainerRegistryManagementClient

azure.com

Anomaly Detector Client

azure.com
The Anomaly Detector API detects anomalies automatically in time series data. It supports two kinds of mode, one is for stateless using, another is for stateful using. In stateless mode, there are three functionalities. Entire Detect is for detecting the whole series with model trained by the time series, Last Detect is detecting last point with model trained by points before. ChangePoint Detect is for detecting trend changes in time series. In stateful mode, user can store time series, the stored time series will be used for detection anomalies. Under this mode, user can still use the above three functionalities by only giving a time range without preparing time series in client side. Besides the above three functionalities, stateful model also provide group based detection and labeling service. By leveraging labeling service user can provide labels for each detection result, these labels will be used for retuning or regenerating detection models. Inconsistency detection is a kind of group based detection, this detection will find inconsistency ones in a set of time series. By using anomaly detector service, business customers can discover incidents and establish a logic flow for root cause analysis.

DataFactoryManagementClient

azure.com

Azure ML Commitment Plans Management Client

azure.com
These APIs allow end users to operate on Azure Machine Learning Commitment Plans resources and their child Commitment Association resources. They support CRUD operations for commitment plans, get and list operations for commitment associations, moving commitment associations between commitment plans, and retrieving commitment plan usage history.

HybridDataManagementClient

azure.com

RecoveryServicesBackupClient

azure.com

Service Fabric Client APIs

azure.com
Service Fabric REST Client APIs allows management of Service Fabric clusters, applications and services.

Security Center

azure.com
API spec for Microsoft.Security (Azure Security Center) resource provider

Azure SQL Database Import/Export spec

azure.com
Provides create and read functionality for Import/Export operations on Azure SQL databases.