Mock sample for your project: AWS IoT 1-Click Devices Service API

Integrate with "AWS IoT 1-Click Devices Service API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS IoT 1-Click Devices Service

amazonaws.com

Version: 2018-05-14


Use this API in your project

Integrate third-party APIs faster by using "AWS IoT 1-Click Devices Service API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

Describes all of the AWS IoT 1-Click device-related API operations for the service.
Also provides sample requests, responses, and errors for the supported web services
protocols.

Other APIs by amazonaws.com

Amazon CloudDirectory

Amazon Cloud Directory Amazon Cloud Directory is a component of the AWS Directory Service that simplifies the development and management of cloud-scale web, mobile, and IoT applications. This guide describes the Cloud Directory operations that you can call programmatically and includes detailed information on data types and errors. For information about Cloud Directory features, see AWS Directory Service and the Amazon Cloud Directory Developer Guide.

AmplifyBackend

AWS Amplify Admin API

AWS DataSync

DataSync DataSync is a managed data transfer service that makes it simpler for you to automate moving data between on-premises storage and Amazon Simple Storage Service (Amazon S3) or Amazon Elastic File System (Amazon EFS). This API interface reference for DataSync contains documentation for a programming interface that you can use to manage DataSync.

Amazon Personalize Events

Amazon Personalize can consume real-time user event data, such as stream or click data, and use it for model training either alone or combined with historical data. For more information see Recording Events.

AWS IoT Greengrass V2

IoT Greengrass brings local compute, messaging, data management, sync, and ML inference capabilities to edge devices. This enables devices to collect and analyze data closer to the source of information, react autonomously to local events, and communicate securely with each other on local networks. Local devices can also communicate securely with Amazon Web Services IoT Core and export IoT data to the Amazon Web Services Cloud. IoT Greengrass developers can use Lambda functions and components to create and deploy applications to fleets of edge devices for local operation. IoT Greengrass Version 2 provides a new major version of the IoT Greengrass Core software, new APIs, and a new console. Use this API reference to learn how to use the IoT Greengrass V2 API operations to manage components, manage deployments, and core devices. For more information, see What is IoT Greengrass? in the IoT Greengrass V2 Developer Guide.

AWS Database Migration Service

Database Migration Service Database Migration Service (DMS) can migrate your data to and from the most widely used commercial and open-source databases such as Oracle, PostgreSQL, Microsoft SQL Server, Amazon Redshift, MariaDB, Amazon Aurora, MySQL, and SAP Adaptive Server Enterprise (ASE). The service supports homogeneous migrations such as Oracle to Oracle, as well as heterogeneous migrations between different database platforms, such as Oracle to MySQL or SQL Server to PostgreSQL. For more information about DMS, see What Is Database Migration Service? in the Database Migration Service User Guide.

Amazon Kinesis Video Streams Archived Media

Amazon CloudHSM

AWS CloudHSM Service This is documentation for AWS CloudHSM Classic. For more information, see AWS CloudHSM Classic FAQs, the AWS CloudHSM Classic User Guide, and the AWS CloudHSM Classic API Reference. For information about the current version of AWS CloudHSM, see AWS CloudHSM, the AWS CloudHSM User Guide, and the AWS CloudHSM API Reference.

Amazon DocumentDB with MongoDB compatibility

Amazon DocumentDB API documentation

Amazon CloudWatch Events

Amazon EventBridge helps you to respond to state changes in your Amazon Web Services resources. When your resources change state, they automatically send events to an event stream. You can create rules that match selected events in the stream and route them to targets to take action. You can also use rules to take action on a predetermined schedule. For example, you can configure rules to: Automatically invoke an Lambda function to update DNS entries when an event notifies you that Amazon EC2 instance enters the running state. Direct specific API records from CloudTrail to an Amazon Kinesis data stream for detailed analysis of potential security or availability risks. Periodically invoke a built-in target to create a snapshot of an Amazon EBS volume. For more information about the features of Amazon EventBridge, see the Amazon EventBridge User Guide.

Amazon Detective

Detective uses machine learning and purpose-built visualizations to help you analyze and investigate security issues across your Amazon Web Services (AWS) workloads. Detective automatically extracts time-based events such as login attempts, API calls, and network traffic from AWS CloudTrail and Amazon Virtual Private Cloud (Amazon VPC) flow logs. It also extracts findings detected by Amazon GuardDuty. The Detective API primarily supports the creation and management of behavior graphs. A behavior graph contains the extracted data from a set of member accounts, and is created and managed by an administrator account. Every behavior graph is specific to a Region. You can only use the API to manage graphs that belong to the Region that is associated with the currently selected endpoint. A Detective administrator account can use the Detective API to do the following: Enable and disable Detective. Enabling Detective creates a new behavior graph. View the list of member accounts in a behavior graph. Add member accounts to a behavior graph. Remove member accounts from a behavior graph. A member account can use the Detective API to do the following: View the list of behavior graphs that they are invited to. Accept an invitation to contribute to a behavior graph. Decline an invitation to contribute to a behavior graph. Remove their account from a behavior graph. All API actions are logged as CloudTrail events. See Logging Detective API Calls with CloudTrail. We replaced the term "master account" with the term "administrator account." An administrator account is used to centrally manage multiple accounts. In the case of Detective, the administrator account manages the accounts in their behavior graph.

Amazon Lex Model Building V2

Other APIs in the same category

FabricAdminClient

azure.com
MAC address pool operation endpoints and objects.

FabricAdminClient

azure.com
Logical subnet operation endpoints and objects.

InfrastructureInsightsManagementClient

azure.com
Resource provider health operation endpoints and objects.

FabricAdminClient

azure.com
Storage system operation endpoints and objects.

DataBoxEdgeManagementClient

azure.com

NetBox API

netboxdemo.com
API to access NetBox

ContainerServiceClient

azure.com
The Container Service Client.

Anomaly Detector Client

azure.com
The Anomaly Detector API detects anomalies automatically in time series data. It supports two kinds of mode, one is for stateless using, another is for stateful using. In stateless mode, there are three functionalities. Entire Detect is for detecting the whole series with model trained by the time series, Last Detect is detecting last point with model trained by points before. ChangePoint Detect is for detecting trend changes in time series. In stateful mode, user can store time series, the stored time series will be used for detection anomalies. Under this mode, user can still use the above three functionalities by only giving a time range without preparing time series in client side. Besides the above three functionalities, stateful model also provide group based detection and labeling service. By leveraging labeling service user can provide labels for each detection result, these labels will be used for retuning or regenerating detection models. Inconsistency detection is a kind of group based detection, this detection will find inconsistency ones in a set of time series. By using anomaly detector service, business customers can discover incidents and establish a logic flow for root cause analysis.

Artifact

azure.com

DevSpacesManagement

azure.com
Dev Spaces REST API

WebApplicationFirewallManagement

azure.com
APIs to manage web application firewall rules.

Cosmos DB

azure.com
Azure Cosmos DB Database Service Resource Provider REST API