Mock sample for your project: Amazon HealthLake API

Integrate with "Amazon HealthLake API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon HealthLake

amazonaws.com

Version: 2017-07-01


Use this API in your project

Integrate third-party APIs faster by using "Amazon HealthLake API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

Amazon HealthLake is a HIPAA eligibile service that allows customers to store, transform, query, and analyze their FHIR-formatted data in a consistent fashion in the cloud.

Other APIs by amazonaws.com

AWS S3 Control

Amazon Web Services S3 Control provides access to Amazon S3 control plane actions.

Amazon GameLift

Amazon GameLift Service GameLift provides solutions for hosting session-based multiplayer game servers in the cloud, including tools for deploying, operating, and scaling game servers. Built on AWS global computing infrastructure, GameLift helps you deliver high-performance, high-reliability, low-cost game servers while dynamically scaling your resource usage to meet player demand. About GameLift solutions Get more information on these GameLift solutions in the GameLift Developer Guide. GameLift managed hosting -- GameLift offers a fully managed service to set up and maintain computing machines for hosting, manage game session and player session life cycle, and handle security, storage, and performance tracking. You can use automatic scaling tools to balance player demand and hosting costs, configure your game session management to minimize player latency, and add FlexMatch for matchmaking. Managed hosting with Realtime Servers -- With GameLift Realtime Servers, you can quickly configure and set up ready-to-go game servers for your game. Realtime Servers provides a game server framework with core GameLift infrastructure already built in. Then use the full range of GameLift managed hosting features, including FlexMatch, for your game. GameLift FleetIQ -- Use GameLift FleetIQ as a standalone service while hosting your games using EC2 instances and Auto Scaling groups. GameLift FleetIQ provides optimizations for game hosting, including boosting the viability of low-cost Spot Instances gaming. For a complete solution, pair the GameLift FleetIQ and FlexMatch standalone services. GameLift FlexMatch -- Add matchmaking to your game hosting solution. FlexMatch is a customizable matchmaking service for multiplayer games. Use FlexMatch as integrated with GameLift managed hosting or incorporate FlexMatch as a standalone service into your own hosting solution. About this API Reference This reference guide describes the low-level service API for Amazon GameLift. With each topic in this guide, you can find links to language-specific SDK guides and the AWS CLI reference. Useful links: GameLift API operations listed by tasks GameLift tools and resources

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

AWS IoT Jobs Data Plane

AWS IoT Jobs is a service that allows you to define a set of jobs — remote operations that are sent to and executed on one or more devices connected to AWS IoT. For example, you can define a job that instructs a set of devices to download and install application or firmware updates, reboot, rotate certificates, or perform remote troubleshooting operations. To create a job, you make a job document which is a description of the remote operations to be performed, and you specify a list of targets that should perform the operations. The targets can be individual things, thing groups or both. AWS IoT Jobs sends a message to inform the targets that a job is available. The target starts the execution of the job by downloading the job document, performing the operations it specifies, and reporting its progress to AWS IoT. The Jobs service provides commands to track the progress of a job on a specific target and for all the targets of the job

AWS IoT Greengrass V2

IoT Greengrass brings local compute, messaging, data management, sync, and ML inference capabilities to edge devices. This enables devices to collect and analyze data closer to the source of information, react autonomously to local events, and communicate securely with each other on local networks. Local devices can also communicate securely with Amazon Web Services IoT Core and export IoT data to the Amazon Web Services Cloud. IoT Greengrass developers can use Lambda functions and components to create and deploy applications to fleets of edge devices for local operation. IoT Greengrass Version 2 provides a new major version of the IoT Greengrass Core software, new APIs, and a new console. Use this API reference to learn how to use the IoT Greengrass V2 API operations to manage components, manage deployments, and core devices. For more information, see What is IoT Greengrass? in the IoT Greengrass V2 Developer Guide.

Amazon Fraud Detector

This is the Amazon Fraud Detector API Reference. This guide is for developers who need detailed information about Amazon Fraud Detector API actions, data types, and errors. For more information about Amazon Fraud Detector features, see the Amazon Fraud Detector User Guide.

AWS CodeStar connections

AWS CodeStar Connections This AWS CodeStar Connections API Reference provides descriptions and usage examples of the operations and data types for the AWS CodeStar Connections API. You can use the connections API to work with connections and installations. Connections are configurations that you use to connect AWS resources to external code repositories. Each connection is a resource that can be given to services such as CodePipeline to connect to a third-party repository such as Bitbucket. For example, you can add the connection in CodePipeline so that it triggers your pipeline when a code change is made to your third-party code repository. Each connection is named and associated with a unique ARN that is used to reference the connection. When you create a connection, the console initiates a third-party connection handshake. Installations are the apps that are used to conduct this handshake. For example, the installation for the Bitbucket provider type is the Bitbucket app. When you create a connection, you can choose an existing installation or create one. When you want to create a connection to an installed provider type such as GitHub Enterprise Server, you create a host for your connections. You can work with connections by calling: CreateConnection, which creates a uniquely named connection that can be referenced by services such as CodePipeline. DeleteConnection, which deletes the specified connection. GetConnection, which returns information about the connection, including the connection status. ListConnections, which lists the connections associated with your account. You can work with hosts by calling: CreateHost, which creates a host that represents the infrastructure where your provider is installed. DeleteHost, which deletes the specified host. GetHost, which returns information about the host, including the setup status. ListHosts, which lists the hosts associated with your account. You can work with tags in AWS CodeStar Connections by calling the following: ListTagsForResource, which gets information about AWS tags for a specified Amazon Resource Name (ARN) in AWS CodeStar Connections. TagResource, which adds or updates tags for a resource in AWS CodeStar Connections. UntagResource, which removes tags for a resource in AWS CodeStar Connections. For information about how to use AWS CodeStar Connections, see the Developer Tools User Guide.

Amazon CodeGuru Profiler

This section provides documentation for the Amazon CodeGuru Profiler API operations. Amazon CodeGuru Profiler collects runtime performance data from your live applications, and provides recommendations that can help you fine-tune your application performance. Using machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of code and suggest ways you can improve efficiency and remove CPU bottlenecks. Amazon CodeGuru Profiler provides different visualizations of profiling data to help you identify what code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU utilization. Amazon CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM) languages and Python. While CodeGuru Profiler supports both visualizations and recommendations for applications written in Java, it can also generate visualizations and a subset of recommendations for applications written in other JVM languages and Python. For more information, see What is Amazon CodeGuru Profiler in the Amazon CodeGuru Profiler User Guide.

Amazon Inspector

Amazon Inspector Amazon Inspector enables you to analyze the behavior of your AWS resources and to identify potential security issues. For more information, see Amazon Inspector User Guide.

AWS Global Accelerator

AWS Global Accelerator This is the AWS Global Accelerator API Reference. This guide is for developers who need detailed information about AWS Global Accelerator API actions, data types, and errors. For more information about Global Accelerator features, see the AWS Global Accelerator Developer Guide. AWS Global Accelerator is a service in which you create accelerators to improve the performance of your applications for local and global users. Depending on the type of accelerator you choose, you can gain additional benefits. By using a standard accelerator, you can improve availability of your internet applications that are used by a global audience. With a standard accelerator, Global Accelerator directs traffic to optimal endpoints over the AWS global network. For other scenarios, you might choose a custom routing accelerator. With a custom routing accelerator, you can use application logic to directly map one or more users to a specific endpoint among many endpoints. Global Accelerator is a global service that supports endpoints in multiple AWS Regions but you must specify the US West (Oregon) Region to create or update accelerators. By default, Global Accelerator provides you with two static IP addresses that you associate with your accelerator. With a standard accelerator, instead of using the IP addresses that Global Accelerator provides, you can configure these entry points to be IPv4 addresses from your own IP address ranges that you bring to Global Accelerator. The static IP addresses are anycast from the AWS edge network. For a standard accelerator, they distribute incoming application traffic across multiple endpoint resources in multiple AWS Regions, which increases the availability of your applications. Endpoints for standard accelerators can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses that are located in one AWS Region or multiple Regions. For custom routing accelerators, you map traffic that arrives to the static IP addresses to specific Amazon EC2 servers in endpoints that are virtual private cloud (VPC) subnets. The static IP addresses remain assigned to your accelerator for as long as it exists, even if you disable the accelerator and it no longer accepts or routes traffic. However, when you delete an accelerator, you lose the static IP addresses that are assigned to it, so you can no longer route traffic by using them. You can use IAM policies like tag-based permissions with Global Accelerator to limit the users who have permissions to delete an accelerator. For more information, see Tag-based policies. For standard accelerators, Global Accelerator uses the AWS global network to route traffic to the optimal regional endpoint based on health, client location, and policies that you configure. The service reacts instantly to changes in health or configuration to ensure that internet traffic from clients is always directed to healthy endpoints. For a list of the AWS Regions where Global Accelerator and other services are currently supported, see the AWS Region Table. AWS Global Accelerator includes the following components: Static IP addresses Global Accelerator provides you with a set of two static IP addresses that are anycast from the AWS edge network. If you bring your own IP address range to AWS (BYOIP) to use with a standard accelerator, you can instead assign IP addresses from your own pool to use with your accelerator. For more information, see Bring your own IP addresses (BYOIP) in AWS Global Accelerator. The IP addresses serve as single fixed entry points for your clients. If you already have Elastic Load Balancing load balancers, Amazon EC2 instances, or Elastic IP address resources set up for your applications, you can easily add those to a standard accelerator in Global Accelerator. This allows Global Accelerator to use static IP addresses to access the resources. The static IP addresses remain assigned to your accelerator for as long as it exists, even if you disable the accelerator and it no longer accepts or routes traffic. However, when you delete an accelerator, you lose the static IP addresses that are assigned to it, so you can no longer route traffic by using them. You can use IAM policies like tag-based permissions with Global Accelerator to delete an accelerator. For more information, see Tag-based policies. Accelerator An accelerator directs traffic to endpoints over the AWS global network to improve the performance of your internet applications. Each accelerator includes one or more listeners. There are two types of accelerators: A standard accelerator directs traffic to the optimal AWS endpoint based on several factors, including the user’s location, the health of the endpoint, and the endpoint weights that you configure. This improves the availability and performance of your applications. Endpoints can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses. A custom routing accelerator directs traffic to one of possibly thousands of Amazon EC2 instances running in a single or multiple virtual private clouds (VPCs). With custom routing, listener ports are mapped to statically associate port ranges with VPC subnets, which allows Global Accelerator to determine an EC2 instance IP address at the time of connection. By default, all port mapping destinations in a VPC subnet can't receive traffic. You can choose to configure all destinations in the subnet to receive traffic, or to specify individual port mappings that can receive traffic. For more information, see Types of accelerators. DNS name Global Accelerator assigns each accelerator a default Domain Name System (DNS) name, similar to a1234567890abcdef.awsglobalaccelerator.com, that points to the static IP addresses that Global Accelerator assigns to you or that you choose from your own IP address range. Depending on the use case, you can use your accelerator's static IP addresses or DNS name to route traffic to your accelerator, or set up DNS records to route traffic using your own custom domain name. Network zone A network zone services the static IP addresses for your accelerator from a unique IP subnet. Similar to an AWS Availability Zone, a network zone is an isolated unit with its own set of physical infrastructure. When you configure an accelerator, by default, Global Accelerator allocates two IPv4 addresses for it. If one IP address from a network zone becomes unavailable due to IP address blocking by certain client networks, or network disruptions, then client applications can retry on the healthy static IP address from the other isolated network zone. Listener A listener processes inbound connections from clients to Global Accelerator, based on the port (or port range) and protocol (or protocols) that you configure. A listener can be configured for TCP, UDP, or both TCP and UDP protocols. Each listener has one or more endpoint groups associated with it, and traffic is forwarded to endpoints in one of the groups. You associate endpoint groups with listeners by specifying the Regions that you want to distribute traffic to. With a standard accelerator, traffic is distributed to optimal endpoints within the endpoint groups associated with a listener. Endpoint group Each endpoint group is associated with a specific AWS Region. Endpoint groups include one or more endpoints in the Region. With a standard accelerator, you can increase or reduce the percentage of traffic that would be otherwise directed to an endpoint group by adjusting a setting called a traffic dial. The traffic dial lets you easily do performance testing or blue/green deployment testing, for example, for new releases across different AWS Regions. Endpoint An endpoint is a resource that Global Accelerator directs traffic to. Endpoints for standard accelerators can be Network Load Balancers, Application Load Balancers, Amazon EC2 instances, or Elastic IP addresses. An Application Load Balancer endpoint can be internet-facing or internal. Traffic for standard accelerators is routed to endpoints based on the health of the endpoint along with configuration options that you choose, such as endpoint weights. For each endpoint, you can configure weights, which are numbers that you can use to specify the proportion of traffic to route to each one. This can be useful, for example, to do performance testing within a Region. Endpoints for custom routing accelerators are virtual private cloud (VPC) subnets with one or many EC2 instances.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

AWS Migration Hub

The AWS Migration Hub API methods help to obtain server and application migration status and integrate your resource-specific migration tool by providing a programmatic interface to Migration Hub. Remember that you must set your AWS Migration Hub home region before you call any of these APIs, or a HomeRegionNotSetException error will be returned. Also, you must make the API calls while in your home region.

Other APIs in the same category

HybridDataManagementClient

azure.com

Amazon Kinesis Firehose

Amazon Kinesis Data Firehose API Reference Amazon Kinesis Data Firehose is a fully managed service that delivers real-time streaming data to destinations such as Amazon Simple Storage Service (Amazon S3), Amazon Elasticsearch Service (Amazon ES), Amazon Redshift, and Splunk.

AWS IoT Data Plane

IoT data IoT data enables secure, bi-directional communication between Internet-connected things (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. It implements a broker for applications and things to publish messages over HTTP (Publish) and retrieve, update, and delete shadows. A shadow is a persistent representation of your things and their state in the Amazon Web Services cloud. Find the endpoint address for actions in IoT data by running this CLI command: aws iot describe-endpoint --endpoint-type iot:Data-ATS The service name used by Amazon Web ServicesSignature Version 4 to sign requests is: iotdevicegateway.

Elastic Load Balancing

Elastic Load Balancing A load balancer distributes incoming traffic across targets, such as your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered targets and ensures that it routes traffic only to healthy targets. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer. You configure a target group with a protocol and port number for connections from the load balancer to the targets, and with health check settings to be used when checking the health status of the targets. Elastic Load Balancing supports the following types of load balancers: Application Load Balancers, Network Load Balancers, Gateway Load Balancers, and Classic Load Balancers. This reference covers the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). For more information, see the Elastic Load Balancing User Guide. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds.

Amazon QLDB Session

The transactional data APIs for Amazon QLDB Instead of interacting directly with this API, we recommend using the QLDB driver or the QLDB shell to execute data transactions on a ledger. If you are working with an AWS SDK, use the QLDB driver. The driver provides a high-level abstraction layer above this QLDB Session data plane and manages SendCommand API calls for you. For information and a list of supported programming languages, see Getting started with the driver in the Amazon QLDB Developer Guide. If you are working with the AWS Command Line Interface (AWS CLI), use the QLDB shell. The shell is a command line interface that uses the QLDB driver to interact with a ledger. For information, see Accessing Amazon QLDB using the QLDB shell.

Amazon Kinesis Video Streams Archived Media

AutomationManagement

azure.com

Amazon Connect Customer Profiles

Amazon Connect Customer Profiles Welcome to the Amazon Connect Customer Profiles API Reference. This guide provides information about the Amazon Connect Customer Profiles API, including supported operations, data types, parameters, and schemas. Amazon Connect Customer Profiles is a unified customer profile for your contact center that has pre-built connectors powered by AppFlow that make it easy to combine customer information from third party applications, such as Salesforce (CRM), ServiceNow (ITSM), and your enterprise resource planning (ERP), with contact history from your Amazon Connect contact center. If you're new to Amazon Connect , you might find it helpful to also review the Amazon Connect Administrator Guide.

PolicyClient

azure.com
To manage and control access to your resources, you can define customized policies and assign them at a scope.

AuthorizationManagementClient

azure.com
Role based access control provides you a way to apply granular level policy administration down to individual resources or resource groups. These operations enable you to manage role definitions and role assignments. A role definition describes the set of actions that can be performed on resources. A role assignment grants access to Azure Active Directory users.

azureactivedirectory

azure.com
Azure Active Directory Client.

InfrastructureInsightsManagementClient

azure.com
Resource provider health operation endpoints and objects.