Mock sample for your project: Elastic Load Balancing API

Integrate with "Elastic Load Balancing API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Elastic Load Balancing

amazonaws.com

Version: 2015-12-01


Use this API in your project

Start working with "Elastic Load Balancing API" right away by using this ready-to-use mock sample. API mocking can greatly speed up your application development by removing all the tedious tasks or issues: API key provisioning, account creation, unplanned downtime, etc.
It also helps reduce your dependency on third-party APIs and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Elastic Load Balancing A load balancer distributes incoming traffic across targets, such as your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered targets and ensures that it routes traffic only to healthy targets. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer. You configure a target group with a protocol and port number for connections from the load balancer to the targets, and with health check settings to be used when checking the health status of the targets. Elastic Load Balancing supports the following types of load balancers: Application Load Balancers, Network Load Balancers, Gateway Load Balancers, and Classic Load Balancers. This reference covers the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). For more information, see the Elastic Load Balancing User Guide. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds.

Other APIs by amazonaws.com

Amazon Inspector

Amazon Inspector Amazon Inspector enables you to analyze the behavior of your AWS resources and to identify potential security issues. For more information, see Amazon Inspector User Guide.

Amazon S3 on Outposts

Amazon S3 on Outposts provides access to S3 on Outposts operations.

AWS Network Firewall

This is the API Reference for AWS Network Firewall. This guide is for developers who need detailed information about the Network Firewall API actions, data types, and errors. The REST API requires you to handle connection details, such as calculating signatures, handling request retries, and error handling. For general information about using the AWS REST APIs, see AWS APIs. To access Network Firewall using the REST API endpoint: https://network-firewall..amazonaws.com Alternatively, you can use one of the AWS SDKs to access an API that's tailored to the programming language or platform that you're using. For more information, see AWS SDKs. For descriptions of Network Firewall features, including and step-by-step instructions on how to use them through the Network Firewall console, see the Network Firewall Developer Guide. Network Firewall is a stateful, managed, network firewall and intrusion detection and prevention service for Amazon Virtual Private Cloud (Amazon VPC). With Network Firewall, you can filter traffic at the perimeter of your VPC. This includes filtering traffic going to and coming from an internet gateway, NAT gateway, or over VPN or AWS Direct Connect. Network Firewall uses rules that are compatible with Suricata, a free, open source intrusion detection system (IDS) engine. For information about Suricata, see the Suricata website. You can use Network Firewall to monitor and protect your VPC traffic in a number of ways. The following are just a few examples: Allow domains or IP addresses for known AWS service endpoints, such as Amazon S3, and block all other forms of traffic. Use custom lists of known bad domains to limit the types of domain names that your applications can access. Perform deep packet inspection on traffic entering or leaving your VPC. Use stateful protocol detection to filter protocols like HTTPS, regardless of the port used. To enable Network Firewall for your VPCs, you perform steps in both Amazon VPC and in Network Firewall. For information about using Amazon VPC, see Amazon VPC User Guide. To start using Network Firewall, do the following: (Optional) If you don't already have a VPC that you want to protect, create it in Amazon VPC. In Amazon VPC, in each Availability Zone where you want to have a firewall endpoint, create a subnet for the sole use of Network Firewall. In Network Firewall, create stateless and stateful rule groups, to define the components of the network traffic filtering behavior that you want your firewall to have. In Network Firewall, create a firewall policy that uses your rule groups and specifies additional default traffic filtering behavior. In Network Firewall, create a firewall and specify your new firewall policy and VPC subnets. Network Firewall creates a firewall endpoint in each subnet that you specify, with the behavior that's defined in the firewall policy. In Amazon VPC, use ingress routing enhancements to route traffic through the new firewall endpoints.

AWS RoboMaker

This section provides documentation for the AWS RoboMaker API operations.

Amazon CloudWatch Logs

You can use Amazon CloudWatch Logs to monitor, store, and access your log files from EC2 instances, CloudTrail, and other sources. You can then retrieve the associated log data from CloudWatch Logs using the CloudWatch console, CloudWatch Logs commands in the Amazon Web Services CLI, CloudWatch Logs API, or CloudWatch Logs SDK. You can use CloudWatch Logs to: Monitor logs from EC2 instances in real-time : You can use CloudWatch Logs to monitor applications and systems using log data. For example, CloudWatch Logs can track the number of errors that occur in your application logs and send you a notification whenever the rate of errors exceeds a threshold that you specify. CloudWatch Logs uses your log data for monitoring so no code changes are required. For example, you can monitor application logs for specific literal terms (such as "NullReferenceException") or count the number of occurrences of a literal term at a particular position in log data (such as "404" status codes in an Apache access log). When the term you are searching for is found, CloudWatch Logs reports the data to a CloudWatch metric that you specify. Monitor CloudTrail logged events : You can create alarms in CloudWatch and receive notifications of particular API activity as captured by CloudTrail. You can use the notification to perform troubleshooting. Archive log data : You can use CloudWatch Logs to store your log data in highly durable storage. You can change the log retention setting so that any log events older than this setting are automatically deleted. The CloudWatch Logs agent makes it easy to quickly send both rotated and non-rotated log data off of a host and into the log service. You can then access the raw log data when you need it.

AWS Certificate Manager Private Certificate Authority

This is the ACM Private CA API Reference. It provides descriptions, syntax, and usage examples for each of the actions and data types involved in creating and managing private certificate authorities (CA) for your organization. The documentation for each action shows the Query API request parameters and the XML response. Alternatively, you can use one of the AWS SDKs to access an API that's tailored to the programming language or platform that you're using. For more information, see AWS SDKs. Each ACM Private CA API operation has a quota that determines the number of times the operation can be called per second. ACM Private CA throttles API requests at different rates depending on the operation. Throttling means that ACM Private CA rejects an otherwise valid request because the request exceeds the operation's quota for the number of requests per second. When a request is throttled, ACM Private CA returns a ThrottlingException error. ACM Private CA does not guarantee a minimum request rate for APIs. To see an up-to-date list of your ACM Private CA quotas, or to request a quota increase, log into your AWS account and visit the Service Quotas console.

Amazon Kinesis Analytics

Amazon Kinesis Data Analytics is a fully managed service that you can use to process and analyze streaming data using Java, SQL, or Scala. The service enables you to quickly author and run Java, SQL, or Scala code against streaming sources to perform time series analytics, feed real-time dashboards, and create real-time metrics.

Amazon Kinesis Firehose

Amazon Kinesis Data Firehose API Reference Amazon Kinesis Data Firehose is a fully managed service that delivers real-time streaming data to destinations such as Amazon Simple Storage Service (Amazon S3), Amazon Elasticsearch Service (Amazon ES), Amazon Redshift, and Splunk.

Amazon Cognito Sync

Amazon Cognito Sync Amazon Cognito Sync provides an AWS service and client library that enable cross-device syncing of application-related user data. High-level client libraries are available for both iOS and Android. You can use these libraries to persist data locally so that it's available even if the device is offline. Developer credentials don't need to be stored on the mobile device to access the service. You can use Amazon Cognito to obtain a normalized user ID and credentials. User data is persisted in a dataset that can store up to 1 MB of key-value pairs, and you can have up to 20 datasets per user identity. With Amazon Cognito Sync, the data stored for each identity is accessible only to credentials assigned to that identity. In order to use the Cognito Sync service, you need to make API calls using credentials retrieved with Amazon Cognito Identity service. If you want to use Cognito Sync in an Android or iOS application, you will probably want to make API calls via the AWS Mobile SDK. To learn more, see the Developer Guide for Android and the Developer Guide for iOS.

AWS Elastic Beanstalk

AWS Elastic Beanstalk AWS Elastic Beanstalk makes it easy for you to create, deploy, and manage scalable, fault-tolerant applications running on the Amazon Web Services cloud. For more information about this product, go to the AWS Elastic Beanstalk details page. The location of the latest AWS Elastic Beanstalk WSDL is https://elasticbeanstalk.s3.amazonaws.com/doc/2010-12-01/AWSElasticBeanstalk.wsdl. To install the Software Development Kits (SDKs), Integrated Development Environment (IDE) Toolkits, and command line tools that enable you to access the API, go to Tools for Amazon Web Services. Endpoints For a list of region-specific endpoints that AWS Elastic Beanstalk supports, go to Regions and Endpoints in the Amazon Web Services Glossary.

AWS DataSync

DataSync DataSync is a managed data transfer service that makes it simpler for you to automate moving data between on-premises storage and Amazon Simple Storage Service (Amazon S3) or Amazon Elastic File System (Amazon EFS). This API interface reference for DataSync contains documentation for a programming interface that you can use to manage DataSync.

AWS Data Pipeline

AWS Data Pipeline configures and manages a data-driven workflow called a pipeline. AWS Data Pipeline handles the details of scheduling and ensuring that data dependencies are met so that your application can focus on processing the data. AWS Data Pipeline provides a JAR implementation of a task runner called AWS Data Pipeline Task Runner. AWS Data Pipeline Task Runner provides logic for common data management scenarios, such as performing database queries and running data analysis using Amazon Elastic MapReduce (Amazon EMR). You can use AWS Data Pipeline Task Runner as your task runner, or you can write your own task runner to provide custom data management. AWS Data Pipeline implements two main sets of functionality. Use the first set to create a pipeline and define data sources, schedules, dependencies, and the transforms to be performed on the data. Use the second set in your task runner application to receive the next task ready for processing. The logic for performing the task, such as querying the data, running data analysis, or converting the data from one format to another, is contained within the task runner. The task runner performs the task assigned to it by the web service, reporting progress to the web service as it does so. When the task is done, the task runner reports the final success or failure of the task to the web service.

Other APIs in the same category

TrafficManagerManagementClient

azure.com

MonitorManagementClient

azure.com

HDInsightJobManagementClient

azure.com
The HDInsight Job Client.

Azure ML Web Services Management Client

azure.com
These APIs allow end users to operate on Azure Machine Learning Web Services resources. They support the following operations: Create or update a web service Get a web service Patch a web service Delete a web service Get All Web Services in a Resource Group Get All Web Services in a Subscription Get Web Services Keys

ContainerInstanceManagementClient

azure.com

ACE Provisioning ManagementPartner

azure.com
This API describe ACE Provisioning ManagementPartner

Content Moderator Client

azure.com
You use the API to scan your content as it is generated. Content Moderator then processes your content and sends the results along with relevant information either back to your systems or to the built-in review tool. You can use this information to take decisions e.g. take it down, send to human judge, etc.
When using the API, images need to have a minimum of 128 pixels and a maximum file size of 4MB.
Text can be at most 1024 characters long.
If the content passed to the text API or the image API exceeds the size limits, the API will return an error code that informs about the issue.

MySQLManagementClient

azure.com
The Microsoft Azure management API provides create, read, update, and delete functionality for Azure MySQL resources including servers, databases, firewall rules, VNET rules, security alert policies, log files and configurations with new business model.

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

ContainerRegistryManagementClient

azure.com

PowerBIDedicated

azure.com
PowerBI Dedicated Web API provides a RESTful set of web services that enables users to create, retrieve, update, and delete Power BI dedicated capacities

Amazon AppConfig

AWS AppConfig Use AWS AppConfig, a capability of AWS Systems Manager, to create, manage, and quickly deploy application configurations. AppConfig supports controlled deployments to applications of any size and includes built-in validation checks and monitoring. You can use AppConfig with applications hosted on Amazon EC2 instances, AWS Lambda, containers, mobile applications, or IoT devices. To prevent errors when deploying application configurations, especially for production systems where a simple typo could cause an unexpected outage, AppConfig includes validators. A validator provides a syntactic or semantic check to ensure that the configuration you want to deploy works as intended. To validate your application configuration data, you provide a schema or a Lambda function that runs against the configuration. The configuration deployment or update can only proceed when the configuration data is valid. During a configuration deployment, AppConfig monitors the application to ensure that the deployment is successful. If the system encounters an error, AppConfig rolls back the change to minimize impact for your application users. You can configure a deployment strategy for each application or environment that includes deployment criteria, including velocity, bake time, and alarms to monitor. Similar to error monitoring, if a deployment triggers an alarm, AppConfig automatically rolls back to the previous version. AppConfig supports multiple use cases. Here are some examples. Application tuning : Use AppConfig to carefully introduce changes to your application that can only be tested with production traffic. Feature toggle : Use AppConfig to turn on new features that require a timely deployment, such as a product launch or announcement. Allow list : Use AppConfig to allow premium subscribers to access paid content. Operational issues : Use AppConfig to reduce stress on your application when a dependency or other external factor impacts the system. This reference is intended to be used with the AWS AppConfig User Guide.