Mock sample for your project: AWS Direct Connect API

Integrate with "AWS Direct Connect API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS Direct Connect

amazonaws.com

Version: 2012-10-25


Use this API in your project

Speed up your application development by using "AWS Direct Connect API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
It also improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Direct Connect links your internal network to an Direct Connect location over a standard Ethernet fiber-optic cable. One end of the cable is connected to your router, the other to an Direct Connect router. With this connection in place, you can create virtual interfaces directly to the Cloud (for example, to Amazon EC2 and Amazon S3) and to Amazon VPC, bypassing Internet service providers in your network path. A connection provides access to all Regions except the China (Beijing) and (China) Ningxia Regions. Amazon Web Services resources in the China Regions can only be accessed through locations associated with those Regions.

Other APIs by amazonaws.com

Amazon DynamoDB Streams

Amazon DynamoDB Amazon DynamoDB Streams provides API actions for accessing streams and processing stream records. To learn more about application development with Streams, see Capturing Table Activity with DynamoDB Streams in the Amazon DynamoDB Developer Guide.

Amazon HealthLake

Amazon HealthLake is a HIPAA eligibile service that allows customers to store, transform, query, and analyze their FHIR-formatted data in a consistent fashion in the cloud.

AWS IoT Data Plane

IoT data IoT data enables secure, bi-directional communication between Internet-connected things (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. It implements a broker for applications and things to publish messages over HTTP (Publish) and retrieve, update, and delete shadows. A shadow is a persistent representation of your things and their state in the Amazon Web Services cloud. Find the endpoint address for actions in IoT data by running this CLI command: aws iot describe-endpoint --endpoint-type iot:Data-ATS The service name used by Amazon Web ServicesSignature Version 4 to sign requests is: iotdevicegateway.

AWS IoT Core Device Advisor

AWS IoT Core Device Advisor is a cloud-based, fully managed test capability for validating IoT devices during device software development. Device Advisor provides pre-built tests that you can use to validate IoT devices for reliable and secure connectivity with AWS IoT Core before deploying devices to production. By using Device Advisor, you can confirm that your devices can connect to AWS IoT Core, follow security best practices and, if applicable, receive software updates from IoT Device Management. You can also download signed qualification reports to submit to the AWS Partner Network to get your device qualified for the AWS Partner Device Catalog without the need to send your device in and wait for it to be tested.

AWS Health APIs and Notifications

AWS Health The AWS Health API provides programmatic access to the AWS Health information that appears in the AWS Personal Health Dashboard. You can use the API operations to get information about AWS Health events that affect your AWS services and resources. You must have a Business or Enterprise Support plan from AWS Support to use the AWS Health API. If you call the AWS Health API from an AWS account that doesn't have a Business or Enterprise Support plan, you receive a SubscriptionRequiredException error. You can use the AWS Health endpoint health.us-east-1.amazonaws.com (HTTPS) to call the AWS Health API operations. AWS Health supports a multi-Region application architecture and has two regional endpoints in an active-passive configuration. You can use the high availability endpoint example to determine which AWS Region is active, so that you can get the latest information from the API. For more information, see Accessing the AWS Health API in the AWS Health User Guide. For authentication of requests, AWS Health uses the Signature Version 4 Signing Process. If your AWS account is part of AWS Organizations, you can use the AWS Health organizational view feature. This feature provides a centralized view of AWS Health events across all accounts in your organization. You can aggregate AWS Health events in real time to identify accounts in your organization that are affected by an operational event or get notified of security vulnerabilities. Use the organizational view API operations to enable this feature and return event information. For more information, see Aggregating AWS Health events in the AWS Health User Guide. When you use the AWS Health API operations to return AWS Health events, see the following recommendations: Use the eventScopeCode parameter to specify whether to return AWS Health events that are public or account-specific. Use pagination to view all events from the response. For example, if you call the DescribeEventsForOrganization operation to get all events in your organization, you might receive several page results. Specify the nextToken in the next request to return more results.

Amazon Detective

Detective uses machine learning and purpose-built visualizations to help you analyze and investigate security issues across your Amazon Web Services (AWS) workloads. Detective automatically extracts time-based events such as login attempts, API calls, and network traffic from AWS CloudTrail and Amazon Virtual Private Cloud (Amazon VPC) flow logs. It also extracts findings detected by Amazon GuardDuty. The Detective API primarily supports the creation and management of behavior graphs. A behavior graph contains the extracted data from a set of member accounts, and is created and managed by an administrator account. Every behavior graph is specific to a Region. You can only use the API to manage graphs that belong to the Region that is associated with the currently selected endpoint. A Detective administrator account can use the Detective API to do the following: Enable and disable Detective. Enabling Detective creates a new behavior graph. View the list of member accounts in a behavior graph. Add member accounts to a behavior graph. Remove member accounts from a behavior graph. A member account can use the Detective API to do the following: View the list of behavior graphs that they are invited to. Accept an invitation to contribute to a behavior graph. Decline an invitation to contribute to a behavior graph. Remove their account from a behavior graph. All API actions are logged as CloudTrail events. See Logging Detective API Calls with CloudTrail. We replaced the term "master account" with the term "administrator account." An administrator account is used to centrally manage multiple accounts. In the case of Detective, the administrator account manages the accounts in their behavior graph.

Amazon FSx

Amazon FSx is a fully managed service that makes it easy for storage and application administrators to launch and use shared file storage.

Amazon GameLift

Amazon GameLift Service GameLift provides solutions for hosting session-based multiplayer game servers in the cloud, including tools for deploying, operating, and scaling game servers. Built on AWS global computing infrastructure, GameLift helps you deliver high-performance, high-reliability, low-cost game servers while dynamically scaling your resource usage to meet player demand. About GameLift solutions Get more information on these GameLift solutions in the GameLift Developer Guide. GameLift managed hosting -- GameLift offers a fully managed service to set up and maintain computing machines for hosting, manage game session and player session life cycle, and handle security, storage, and performance tracking. You can use automatic scaling tools to balance player demand and hosting costs, configure your game session management to minimize player latency, and add FlexMatch for matchmaking. Managed hosting with Realtime Servers -- With GameLift Realtime Servers, you can quickly configure and set up ready-to-go game servers for your game. Realtime Servers provides a game server framework with core GameLift infrastructure already built in. Then use the full range of GameLift managed hosting features, including FlexMatch, for your game. GameLift FleetIQ -- Use GameLift FleetIQ as a standalone service while hosting your games using EC2 instances and Auto Scaling groups. GameLift FleetIQ provides optimizations for game hosting, including boosting the viability of low-cost Spot Instances gaming. For a complete solution, pair the GameLift FleetIQ and FlexMatch standalone services. GameLift FlexMatch -- Add matchmaking to your game hosting solution. FlexMatch is a customizable matchmaking service for multiplayer games. Use FlexMatch as integrated with GameLift managed hosting or incorporate FlexMatch as a standalone service into your own hosting solution. About this API Reference This reference guide describes the low-level service API for Amazon GameLift. With each topic in this guide, you can find links to language-specific SDK guides and the AWS CLI reference. Useful links: GameLift API operations listed by tasks GameLift tools and resources

Elastic Load Balancing

Elastic Load Balancing A load balancer distributes incoming traffic across targets, such as your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered targets and ensures that it routes traffic only to healthy targets. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer. You configure a target group with a protocol and port number for connections from the load balancer to the targets, and with health check settings to be used when checking the health status of the targets. Elastic Load Balancing supports the following types of load balancers: Application Load Balancers, Network Load Balancers, Gateway Load Balancers, and Classic Load Balancers. This reference covers the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). For more information, see the Elastic Load Balancing User Guide. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds.

Managed Streaming for Kafka

The operations for managing an Amazon MSK cluster.

Amazon Glacier

Amazon S3 Glacier (Glacier) is a storage solution for "cold data." Glacier is an extremely low-cost storage service that provides secure, durable, and easy-to-use storage for data backup and archival. With Glacier, customers can store their data cost effectively for months, years, or decades. Glacier also enables customers to offload the administrative burdens of operating and scaling storage to AWS, so they don't have to worry about capacity planning, hardware provisioning, data replication, hardware failure and recovery, or time-consuming hardware migrations. Glacier is a great storage choice when low storage cost is paramount and your data is rarely retrieved. If your application requires fast or frequent access to your data, consider using Amazon S3. For more information, see Amazon Simple Storage Service (Amazon S3). You can store any kind of data in any format. There is no maximum limit on the total amount of data you can store in Glacier. If you are a first-time user of Glacier, we recommend that you begin by reading the following sections in the Amazon S3 Glacier Developer Guide : What is Amazon S3 Glacier - This section of the Developer Guide describes the underlying data model, the operations it supports, and the AWS SDKs that you can use to interact with the service. Getting Started with Amazon S3 Glacier - The Getting Started section walks you through the process of creating a vault, uploading archives, creating jobs to download archives, retrieving the job output, and deleting archives.
The Amazon Braket API Reference provides information about the operations and structures supported in Amazon Braket.

Other APIs in the same category

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for web test locations.

ManagedServiceIdentityClient

azure.com
The Managed Service Identity Client.

Customer Lockbox

azure.com
Azure Customer Lockbox API Reference

iotDpsClient

azure.com
API for using the Azure IoT Hub Device Provisioning Service features.

SharedImageGalleryServiceClient

azure.com
Shared Image Gallery Service Client.

DataBoxManagementClient

azure.com

ContainerServiceClient

azure.com
The Container Service Client.

CustomerInsightsManagementClient

azure.com
The Azure Customer Insights management API provides a RESTful set of web services that interact with Azure Customer Insights service to manage your resources. The API has entities that capture the relationship between an end user and the Azure Customer Insights service.

Face Client

azure.com
An API for face detection, verification, and identification.

Machine Learning Workspaces Management Client

azure.com
These APIs allow end users to operate on Azure Machine Learning Workspace resources. They support CRUD operations for Azure Machine Learning Workspaces.

Azure DevOps

azure.com
Azure DevOps Resource Provider

DataBoxEdgeManagementClient

azure.com