Mock sample for your project: AWS Greengrass API

Integrate with "AWS Greengrass API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS Greengrass

amazonaws.com

Version: 2017-06-07


Use this API in your project

Integrate third-party APIs faster by using "AWS Greengrass API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

AWS IoT Greengrass seamlessly extends AWS onto physical devices so they can act locally on the data they generate, while still using the cloud for management, analytics, and durable storage. AWS IoT Greengrass ensures your devices can respond quickly to local events and operate with intermittent connectivity. AWS IoT Greengrass minimizes the cost of transmitting data to the cloud by allowing you to author AWS Lambda functions that execute locally.

Other APIs by amazonaws.com

AWS Fault Injection Simulator

AWS Fault Injection Simulator is a managed service that enables you to perform fault injection experiments on your AWS workloads. For more information, see the AWS Fault Injection Simulator User Guide.

Amazon Kinesis Analytics

Amazon Kinesis Analytics Overview This documentation is for version 1 of the Amazon Kinesis Data Analytics API, which only supports SQL applications. Version 2 of the API supports SQL and Java applications. For more information about version 2, see Amazon Kinesis Data Analytics API V2 Documentation. This is the Amazon Kinesis Analytics v1 API Reference. The Amazon Kinesis Analytics Developer Guide provides additional information.

AWS Marketplace Entitlement Service

AWS Marketplace Entitlement Service This reference provides descriptions of the AWS Marketplace Entitlement Service API. AWS Marketplace Entitlement Service is used to determine the entitlement of a customer to a given product. An entitlement represents capacity in a product owned by the customer. For example, a customer might own some number of users or seats in an SaaS application or some amount of data capacity in a multi-tenant database. Getting Entitlement Records GetEntitlements - Gets the entitlements for a Marketplace product.

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

Amazon CloudFront

Amazon CloudFront This is the Amazon CloudFront API Reference. This guide is for developers who need detailed information about CloudFront API actions, data types, and errors. For detailed information about CloudFront features, see the Amazon CloudFront Developer Guide.

AWS Performance Insights

Amazon RDS Performance Insights Amazon RDS Performance Insights enables you to monitor and explore different dimensions of database load based on data captured from a running DB instance. The guide provides detailed information about Performance Insights data types, parameters and errors. When Performance Insights is enabled, the Amazon RDS Performance Insights API provides visibility into the performance of your DB instance. Amazon CloudWatch provides the authoritative source for AWS service-vended monitoring metrics. Performance Insights offers a domain-specific view of DB load. DB load is measured as Average Active Sessions. Performance Insights provides the data to API consumers as a two-dimensional time-series dataset. The time dimension provides DB load data for each time point in the queried time range. Each time point decomposes overall load in relation to the requested dimensions, measured at that time point. Examples include SQL, Wait event, User, and Host. To learn more about Performance Insights and Amazon Aurora DB instances, go to the Amazon Aurora User Guide. To learn more about Performance Insights and Amazon RDS DB instances, go to the Amazon RDS User Guide.

AWS Outposts

AWS Outposts is a fully managed service that extends AWS infrastructure, APIs, and tools to customer premises. By providing local access to AWS managed infrastructure, AWS Outposts enables customers to build and run applications on premises using the same programming interfaces as in AWS Regions, while using local compute and storage resources for lower latency and local data processing needs.

AWS Resource Groups

AWS Resource Groups AWS Resource Groups lets you organize AWS resources such as Amazon EC2 instances, Amazon Relational Database Service databases, and Amazon S3 buckets into groups using criteria that you define as tags. A resource group is a collection of resources that match the resource types specified in a query, and share one or more tags or portions of tags. You can create a group of resources based on their roles in your cloud infrastructure, lifecycle stages, regions, application layers, or virtually any criteria. Resource Groups enable you to automate management tasks, such as those in AWS Systems Manager Automation documents, on tag-related resources in AWS Systems Manager. Groups of tagged resources also let you quickly view a custom console in AWS Systems Manager that shows AWS Config compliance and other monitoring data about member resources. To create a resource group, build a resource query, and specify tags that identify the criteria that members of the group have in common. Tags are key-value pairs. For more information about Resource Groups, see the AWS Resource Groups User Guide. AWS Resource Groups uses a REST-compliant API that you can use to perform the following types of operations. Create, Read, Update, and Delete (CRUD) operations on resource groups and resource query entities Applying, editing, and removing tags from resource groups Resolving resource group member ARNs so they can be returned as search results Getting data about resources that are members of a group Searching AWS resources based on a resource query

AWS Cloud9

Cloud9 Cloud9 is a collection of tools that you can use to code, build, run, test, debug, and release software in the cloud. For more information about Cloud9, see the Cloud9 User Guide. Cloud9 supports these operations: CreateEnvironmentEC2 : Creates an Cloud9 development environment, launches an Amazon EC2 instance, and then connects from the instance to the environment. CreateEnvironmentMembership : Adds an environment member to an environment. DeleteEnvironment : Deletes an environment. If an Amazon EC2 instance is connected to the environment, also terminates the instance. DeleteEnvironmentMembership : Deletes an environment member from an environment. DescribeEnvironmentMemberships : Gets information about environment members for an environment. DescribeEnvironments : Gets information about environments. DescribeEnvironmentStatus : Gets status information for an environment. ListEnvironments : Gets a list of environment identifiers. ListTagsForResource : Gets the tags for an environment. TagResource : Adds tags to an environment. UntagResource : Removes tags from an environment. UpdateEnvironment : Changes the settings of an existing environment. UpdateEnvironmentMembership : Changes the settings of an existing environment member for an environment.

Elastic Load Balancing

Elastic Load Balancing A load balancer distributes incoming traffic across targets, such as your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered targets and ensures that it routes traffic only to healthy targets. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer. You configure a target group with a protocol and port number for connections from the load balancer to the targets, and with health check settings to be used when checking the health status of the targets. Elastic Load Balancing supports the following types of load balancers: Application Load Balancers, Network Load Balancers, Gateway Load Balancers, and Classic Load Balancers. This reference covers the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). For more information, see the Elastic Load Balancing User Guide. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds.

Amazon Lookout for Vision

This is the Amazon Lookout for Vision API Reference. It provides descriptions of actions, data types, common parameters, and common errors. Amazon Lookout for Vision enables you to find visual defects in industrial products, accurately and at scale. It uses computer vision to identify missing components in an industrial product, damage to vehicles or structures, irregularities in production lines, and even minuscule defects in silicon wafers — or any other physical item where quality is important such as a missing capacitor on printed circuit boards.

Amazon AppIntegrations Service

The Amazon AppIntegrations service enables you to configure and reuse connections to external applications. For information about how you can use external applications with Amazon Connect, see Set up pre-built integrations in the Amazon Connect Administrator Guide.

Other APIs in the same category

Azure Activity Log Alerts

azure.com

Amazon Macie 2

Amazon Macie is a fully managed data security and data privacy service that uses machine learning and pattern matching to discover and protect your sensitive data in AWS. Macie automates the discovery of sensitive data, such as PII and intellectual property, to provide you with insight into the data that your organization stores in AWS. Macie also provides an inventory of your Amazon S3 buckets, which it continually monitors for you. If Macie detects sensitive data or potential data access issues, it generates detailed findings for you to review and act upon as necessary.

StorageManagementClient

azure.com
The Admin Storage Management Client.

Amazon Kinesis Analytics

Amazon Kinesis Data Analytics is a fully managed service that you can use to process and analyze streaming data using Java, SQL, or Scala. The service enables you to quickly author and run Java, SQL, or Scala code against streaming sources to perform time series analytics, feed real-time dashboards, and create real-time metrics.

AWS Elemental MediaStore Data Plane

An AWS Elemental MediaStore asset is an object, similar to an object in the Amazon S3 service. Objects are the fundamental entities that are stored in AWS Elemental MediaStore.

BlueprintClient

azure.com
Azure Blueprints Client provides access to blueprint definitions, assignments, and artifacts, and related blueprint operations.

AzureBridgeAdminClient

azure.com
AzureBridge Admin Client.

AutomationManagement

azure.com

DeploymentAdminClient

azure.com
Deployment Admin Client.

AutomationManagement

azure.com

ApiManagementClient

azure.com
Use these REST APIs for performing operations on logger entity Azure API Management deployment.The Logger entity in API Management represents an event sink that you can use to log API Management events. Currently the Logger entity supports logging API Management events to Azure EventHub.

Amazon Transcribe Service

Operations and objects for transcribing speech to text.