Mock sample for your project: Amazon CloudSearch API

Integrate with "Amazon CloudSearch API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon CloudSearch

amazonaws.com

Version: 2013-01-01


Use this API in your project

Speed up your application development by using "Amazon CloudSearch API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and allow you to stop relying on an external API to get the job done. No more API keys to provision, accesses to configure or unplanned downtime, just work.
Enhance your development infrastructure by mocking third party APIs during integrating testing.

Description

Amazon CloudSearch Configuration Service You use the Amazon CloudSearch configuration service to create, configure, and manage search domains. Configuration service requests are submitted using the AWS Query protocol. AWS Query requests are HTTP or HTTPS requests submitted via HTTP GET or POST with a query parameter named Action. The endpoint for configuration service requests is region-specific: cloudsearch. region.amazonaws.com. For example, cloudsearch.us-east-1.amazonaws.com. For a current list of supported regions and endpoints, see Regions and Endpoints.

Other APIs by amazonaws.com

AWS CodeStar

AWS CodeStar This is the API reference for AWS CodeStar. This reference provides descriptions of the operations and data types for the AWS CodeStar API along with usage examples. You can use the AWS CodeStar API to work with: Projects and their resources, by calling the following: DeleteProject, which deletes a project. DescribeProject, which lists the attributes of a project. ListProjects, which lists all projects associated with your AWS account. ListResources, which lists the resources associated with a project. ListTagsForProject, which lists the tags associated with a project. TagProject, which adds tags to a project. UntagProject, which removes tags from a project. UpdateProject, which updates the attributes of a project. Teams and team members, by calling the following: AssociateTeamMember, which adds an IAM user to the team for a project. DisassociateTeamMember, which removes an IAM user from the team for a project. ListTeamMembers, which lists all the IAM users in the team for a project, including their roles and attributes. UpdateTeamMember, which updates a team member's attributes in a project. Users, by calling the following: CreateUserProfile, which creates a user profile that contains data associated with the user across all projects. DeleteUserProfile, which deletes all user profile information across all projects. DescribeUserProfile, which describes the profile of a user. ListUserProfiles, which lists all user profiles. UpdateUserProfile, which updates the profile for a user.

AmazonNimbleStudio

AWS Network Firewall

This is the API Reference for AWS Network Firewall. This guide is for developers who need detailed information about the Network Firewall API actions, data types, and errors. The REST API requires you to handle connection details, such as calculating signatures, handling request retries, and error handling. For general information about using the AWS REST APIs, see AWS APIs. To access Network Firewall using the REST API endpoint: https://network-firewall..amazonaws.com Alternatively, you can use one of the AWS SDKs to access an API that's tailored to the programming language or platform that you're using. For more information, see AWS SDKs. For descriptions of Network Firewall features, including and step-by-step instructions on how to use them through the Network Firewall console, see the Network Firewall Developer Guide. Network Firewall is a stateful, managed, network firewall and intrusion detection and prevention service for Amazon Virtual Private Cloud (Amazon VPC). With Network Firewall, you can filter traffic at the perimeter of your VPC. This includes filtering traffic going to and coming from an internet gateway, NAT gateway, or over VPN or AWS Direct Connect. Network Firewall uses rules that are compatible with Suricata, a free, open source intrusion detection system (IDS) engine. For information about Suricata, see the Suricata website. You can use Network Firewall to monitor and protect your VPC traffic in a number of ways. The following are just a few examples: Allow domains or IP addresses for known AWS service endpoints, such as Amazon S3, and block all other forms of traffic. Use custom lists of known bad domains to limit the types of domain names that your applications can access. Perform deep packet inspection on traffic entering or leaving your VPC. Use stateful protocol detection to filter protocols like HTTPS, regardless of the port used. To enable Network Firewall for your VPCs, you perform steps in both Amazon VPC and in Network Firewall. For information about using Amazon VPC, see Amazon VPC User Guide. To start using Network Firewall, do the following: (Optional) If you don't already have a VPC that you want to protect, create it in Amazon VPC. In Amazon VPC, in each Availability Zone where you want to have a firewall endpoint, create a subnet for the sole use of Network Firewall. In Network Firewall, create stateless and stateful rule groups, to define the components of the network traffic filtering behavior that you want your firewall to have. In Network Firewall, create a firewall policy that uses your rule groups and specifies additional default traffic filtering behavior. In Network Firewall, create a firewall and specify your new firewall policy and VPC subnets. Network Firewall creates a firewall endpoint in each subnet that you specify, with the behavior that's defined in the firewall policy. In Amazon VPC, use ingress routing enhancements to route traffic through the new firewall endpoints.

AWS Device Farm

Welcome to the AWS Device Farm API documentation, which contains APIs for: Testing on desktop browsers Device Farm makes it possible for you to test your web applications on desktop browsers using Selenium. The APIs for desktop browser testing contain TestGrid in their names. For more information, see Testing Web Applications on Selenium with Device Farm. Testing on real mobile devices Device Farm makes it possible for you to test apps on physical phones, tablets, and other devices in the cloud. For more information, see the Device Farm Developer Guide.

Application Auto Scaling

With Application Auto Scaling, you can configure automatic scaling for the following resources: Amazon AppStream 2.0 fleets Amazon Aurora Replicas Amazon Comprehend document classification and entity recognizer endpoints Amazon DynamoDB tables and global secondary indexes throughput capacity Amazon ECS services Amazon ElastiCache for Redis clusters (replication groups) Amazon EMR clusters Amazon Keyspaces (for Apache Cassandra) tables Lambda function provisioned concurrency Amazon Managed Streaming for Apache Kafka broker storage Amazon SageMaker endpoint variants Spot Fleet (Amazon EC2) requests Custom resources provided by your own applications or services API Summary The Application Auto Scaling service API includes three key sets of actions: Register and manage scalable targets - Register Amazon Web Services or custom resources as scalable targets (a resource that Application Auto Scaling can scale), set minimum and maximum capacity limits, and retrieve information on existing scalable targets. Configure and manage automatic scaling - Define scaling policies to dynamically scale your resources in response to CloudWatch alarms, schedule one-time or recurring scaling actions, and retrieve your recent scaling activity history. Suspend and resume scaling - Temporarily suspend and later resume automatic scaling by calling the RegisterScalableTarget API action for any Application Auto Scaling scalable target. You can suspend and resume (individually or in combination) scale-out activities that are triggered by a scaling policy, scale-in activities that are triggered by a scaling policy, and scheduled scaling. To learn more about Application Auto Scaling, including information about granting IAM users required permissions for Application Auto Scaling actions, see the Application Auto Scaling User Guide.

AWS RoboMaker

This section provides documentation for the AWS RoboMaker API operations.

Amazon Elastic File System

Amazon Elastic File System Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use with Amazon EC2 instances in the Amazon Web Services Cloud. With Amazon EFS, storage capacity is elastic, growing and shrinking automatically as you add and remove files, so your applications have the storage they need, when they need it. For more information, see the Amazon Elastic File System API Reference and the Amazon Elastic File System User Guide.

Amazon CloudWatch Application Insights

Amazon CloudWatch Application Insights Amazon CloudWatch Application Insights is a service that helps you detect common problems with your applications. It enables you to pinpoint the source of issues in your applications (built with technologies such as Microsoft IIS, .NET, and Microsoft SQL Server), by providing key insights into detected problems. After you onboard your application, CloudWatch Application Insights identifies, recommends, and sets up metrics and logs. It continuously analyzes and correlates your metrics and logs for unusual behavior to surface actionable problems with your application. For example, if your application is slow and unresponsive and leading to HTTP 500 errors in your Application Load Balancer (ALB), Application Insights informs you that a memory pressure problem with your SQL Server database is occurring. It bases this analysis on impactful metrics and log errors.

Amazon CloudWatch

Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.

AWS Compute Optimizer

Compute Optimizer is a service that analyzes the configuration and utilization metrics of your Amazon Web Services compute resources, such as Amazon EC2 instances, Amazon EC2 Auto Scaling groups, Lambda functions, and Amazon EBS volumes. It reports whether your resources are optimal, and generates optimization recommendations to reduce the cost and improve the performance of your workloads. Compute Optimizer also provides recent utilization metric data, in addition to projected utilization metric data for the recommendations, which you can use to evaluate which recommendation provides the best price-performance trade-off. The analysis of your usage patterns can help you decide when to move or resize your running resources, and still meet your performance and capacity requirements. For more information about Compute Optimizer, including the required permissions to use the service, see the Compute Optimizer User Guide.

Amazon Pinpoint

Doc Engage API - Amazon Pinpoint API

Amazon Athena

Amazon Athena is an interactive query service that lets you use standard SQL to analyze data directly in Amazon S3. You can point Athena at your data in Amazon S3 and run ad-hoc queries and get results in seconds. Athena is serverless, so there is no infrastructure to set up or manage. You pay only for the queries you run. Athena scales automatically—executing queries in parallel—so results are fast, even with large datasets and complex queries. For more information, see What is Amazon Athena in the Amazon Athena User Guide. If you connect to Athena using the JDBC driver, use version 1.1.0 of the driver or later with the Amazon Athena API. Earlier version drivers do not support the API. For more information and to download the driver, see Accessing Amazon Athena with JDBC. For code samples using the Amazon Web Services SDK for Java, see Examples and Code Samples in the Amazon Athena User Guide.

Other APIs in the same category

AWS Lake Formation

AWS Lake Formation Defines the public endpoint for the AWS Lake Formation service.

SqlManagementClient

azure.com
The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.

Compute Admin Client

azure.com

ApiManagementClient

azure.com
Use these REST APIs for querying APIs. Operations and Products by tags in your Azure API Management deployment.

AWS IoT Greengrass V2

IoT Greengrass brings local compute, messaging, data management, sync, and ML inference capabilities to edge devices. This enables devices to collect and analyze data closer to the source of information, react autonomously to local events, and communicate securely with each other on local networks. Local devices can also communicate securely with Amazon Web Services IoT Core and export IoT data to the Amazon Web Services Cloud. IoT Greengrass developers can use Lambda functions and components to create and deploy applications to fleets of edge devices for local operation. IoT Greengrass Version 2 provides a new major version of the IoT Greengrass Core software, new APIs, and a new console. Use this API reference to learn how to use the IoT Greengrass V2 API operations to manage components, manage deployments, and core devices. For more information, see What is IoT Greengrass? in the IoT Greengrass V2 Developer Guide.

AWS EC2 Instance Connect

Amazon EC2 Instance Connect enables system administrators to publish one-time use SSH public keys to EC2, providing users a simple and secure way to connect to their instances.

AWS Systems Manager Incident Manager Contacts

Systems Manager Incident Manager is an incident management console designed to help users mitigate and recover from incidents affecting their Amazon Web Services-hosted applications. An incident is any unplanned interruption or reduction in quality of services. Incident Manager increases incident resolution by notifying responders of impact, highlighting relevant troubleshooting data, and providing collaboration tools to get services back up and running. To achieve the primary goal of reducing the time-to-resolution of critical incidents, Incident Manager automates response plans and enables responder team escalation.

Amazon DocumentDB with MongoDB compatibility

Amazon DocumentDB API documentation

Amazon Import/Export Snowball

AWS Snow Family is a petabyte-scale data transport solution that uses secure devices to transfer large amounts of data between your on-premises data centers and Amazon Simple Storage Service (Amazon S3). The Snow commands described here provide access to the same functionality that is available in the AWS Snow Family Management Console, which enables you to create and manage jobs for a Snow device. To transfer data locally with a Snow device, you'll need to use the Snowball Edge client or the Amazon S3 API Interface for Snowball or AWS OpsHub for Snow Family. For more information, see the User Guide.

GalleryManagementClient

azure.com
The Admin Gallery Management Client.

AWS App Mesh

App Mesh is a service mesh based on the Envoy proxy that makes it easy to monitor and control microservices. App Mesh standardizes how your microservices communicate, giving you end-to-end visibility and helping to ensure high availability for your applications. App Mesh gives you consistent visibility and network traffic controls for every microservice in an application. You can use App Mesh with Amazon Web Services Fargate, Amazon ECS, Amazon EKS, Kubernetes on Amazon Web Services, and Amazon EC2. App Mesh supports microservice applications that use service discovery naming for their components. For more information about service discovery on Amazon ECS, see Service Discovery in the Amazon Elastic Container Service Developer Guide. Kubernetes kube-dns and coredns are supported. For more information, see DNS for Services and Pods in the Kubernetes documentation.

Amazon Forecast Service

Provides APIs for creating and managing Amazon Forecast resources.