Mock sample for your project: Amazon AppIntegrations Service API

Integrate with "Amazon AppIntegrations Service API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon AppIntegrations Service

amazonaws.com

Version: 2020-07-29


Use this API in your project

Integrate third-party APIs faster by using "Amazon AppIntegrations Service API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
Improve your integration tests by mocking third-party APIs and cover more edge cases: slow response time, random failures, etc.

Description

The Amazon AppIntegrations service enables you to configure and reuse connections to external applications. For information about how you can use external applications with Amazon Connect, see Set up pre-built integrations in the Amazon Connect Administrator Guide.

Other APIs by amazonaws.com

AmazonNimbleStudio

AWS OpsWorks

AWS OpsWorks Welcome to the AWS OpsWorks Stacks API Reference. This guide provides descriptions, syntax, and usage examples for AWS OpsWorks Stacks actions and data types, including common parameters and error codes. AWS OpsWorks Stacks is an application management service that provides an integrated experience for overseeing the complete application lifecycle. For information about this product, go to the AWS OpsWorks details page. SDKs and CLI The most common way to use the AWS OpsWorks Stacks API is by using the AWS Command Line Interface (CLI) or by using one of the AWS SDKs to implement applications in your preferred language. For more information, see: AWS CLI AWS SDK for Java AWS SDK for .NET AWS SDK for PHP 2 AWS SDK for Ruby AWS SDK for Node.js AWS SDK for Python(Boto) Endpoints AWS OpsWorks Stacks supports the following endpoints, all HTTPS. You must connect to one of the following endpoints. Stacks can only be accessed or managed within the endpoint in which they are created. opsworks.us-east-1.amazonaws.com opsworks.us-east-2.amazonaws.com opsworks.us-west-1.amazonaws.com opsworks.us-west-2.amazonaws.com opsworks.ca-central-1.amazonaws.com (API only; not available in the AWS console) opsworks.eu-west-1.amazonaws.com opsworks.eu-west-2.amazonaws.com opsworks.eu-west-3.amazonaws.com opsworks.eu-central-1.amazonaws.com opsworks.ap-northeast-1.amazonaws.com opsworks.ap-northeast-2.amazonaws.com opsworks.ap-south-1.amazonaws.com opsworks.ap-southeast-1.amazonaws.com opsworks.ap-southeast-2.amazonaws.com opsworks.sa-east-1.amazonaws.com Chef Versions When you call CreateStack, CloneStack, or UpdateStack we recommend you use the ConfigurationManager parameter to specify the Chef version. The recommended and default value for Linux stacks is currently 12. Windows stacks use Chef 12.2. For more information, see Chef Versions. You can specify Chef 12, 11.10, or 11.4 for your Linux stack. We recommend migrating your existing Linux stacks to Chef 12 as soon as possible.

Amazon Personalize Events

Amazon Personalize can consume real-time user event data, such as stream or click data, and use it for model training either alone or combined with historical data. For more information see Recording Events.

AWS Snow Device Management

Amazon Web Services Snow Device Management documentation.

Amazon Lex Runtime Service

Amazon Lex provides both build and runtime endpoints. Each endpoint provides a set of operations (API). Your conversational bot uses the runtime API to understand user utterances (user input text or voice). For example, suppose a user says "I want pizza", your bot sends this input to Amazon Lex using the runtime API. Amazon Lex recognizes that the user request is for the OrderPizza intent (one of the intents defined in the bot). Then Amazon Lex engages in user conversation on behalf of the bot to elicit required information (slot values, such as pizza size and crust type), and then performs fulfillment activity (that you configured when you created the bot). You use the build-time API to create and manage your Amazon Lex bot. For a list of build-time operations, see the build-time API, .

AWS SecurityHub

Security Hub provides you with a comprehensive view of the security state of your Amazon Web Services environment and resources. It also provides you with the readiness status of your environment based on controls from supported security standards. Security Hub collects security data from Amazon Web Services accounts, services, and integrated third-party products and helps you analyze security trends in your environment to identify the highest priority security issues. For more information about Security Hub, see the Security Hub User Guide . When you use operations in the Security Hub API, the requests are executed only in the Amazon Web Services Region that is currently active or in the specific Amazon Web Services Region that you specify in your request. Any configuration or settings change that results from the operation is applied only to that Region. To make the same change in other Regions, execute the same command for each Region to apply the change to. For example, if your Region is set to us-west-2, when you use CreateMembers to add a member account to Security Hub, the association of the member account with the administrator account is created only in the us-west-2 Region. Security Hub must be enabled for the member account in the same Region that the invitation was sent from. The following throttling limits apply to using Security Hub API operations. BatchEnableStandards - RateLimit of 1 request per second, BurstLimit of 1 request per second. GetFindings - RateLimit of 3 requests per second. BurstLimit of 6 requests per second. UpdateFindings - RateLimit of 1 request per second. BurstLimit of 5 requests per second. UpdateStandardsControl - RateLimit of 1 request per second, BurstLimit of 5 requests per second. All other operations - RateLimit of 10 requests per second. BurstLimit of 30 requests per second.

AWS Signer

AWS Signer is a fully managed code signing service to help you ensure the trust and integrity of your code. AWS Signer supports the following applications: With code signing for AWS Lambda, you can sign AWS Lambda deployment packages. Integrated support is provided for Amazon S3, Amazon CloudWatch, and AWS CloudTrail. In order to sign code, you create a signing profile and then use Signer to sign Lambda zip files in S3. With code signing for IoT, you can sign code for any IoT device that is supported by AWS. IoT code signing is available for Amazon FreeRTOS and AWS IoT Device Management, and is integrated with AWS Certificate Manager (ACM). In order to sign code, you import a third-party code signing certificate using ACM, and use that to sign updates in Amazon FreeRTOS and AWS IoT Device Management. For more information about AWS Signer, see the AWS Signer Developer Guide.

AWS Cloud Map

Cloud Map With Cloud Map, you can configure public DNS, private DNS, or HTTP namespaces that your microservice applications run in. When an instance becomes available, you can call the Cloud Map API to register the instance with Cloud Map. For public or private DNS namespaces, Cloud Map automatically creates DNS records and an optional health check. Clients that submit public or private DNS queries, or HTTP requests, for the service receive an answer that contains up to eight healthy records.

AWS Single Sign-On

AWS Single Sign-On Portal is a web service that makes it easy for you to assign user access to AWS SSO resources such as the user portal. Users can get AWS account applications and roles assigned to them and get federated into the application. For general information about AWS SSO, see What is AWS Single Sign-On? in the AWS SSO User Guide. This API reference guide describes the AWS SSO Portal operations that you can call programatically and includes detailed information on data types and errors. AWS provides SDKs that consist of libraries and sample code for various programming languages and platforms, such as Java, Ruby, .Net, iOS, or Android. The SDKs provide a convenient way to create programmatic access to AWS SSO and other AWS services. For more information about the AWS SDKs, including how to download and install them, see Tools for Amazon Web Services.

AWS Key Management Service

Key Management Service Key Management Service (KMS) is an encryption and key management web service. This guide describes the KMS operations that you can call programmatically. For general information about KMS, see the Key Management Service Developer Guide . KMS is replacing the term customer master key (CMK) with KMS key and KMS key. The concept has not changed. To prevent breaking changes, KMS is keeping some variations of this term. Amazon Web Services provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, macOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to KMS and other Amazon Web Services services. For example, the SDKs take care of tasks such as signing requests (see below), managing errors, and retrying requests automatically. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools for Amazon Web Services. We recommend that you use the Amazon Web Services SDKs to make programmatic API calls to KMS. Clients must support TLS (Transport Layer Security) 1.0. We recommend TLS 1.2. Clients must also support cipher suites with Perfect Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes. Signing Requests Requests must be signed by using an access key ID and a secret access key. We strongly recommend that you do not use your Amazon Web Services account (root) access key ID and secret key for everyday work with KMS. Instead, use the access key ID and secret access key for an IAM user. You can also use the Amazon Web Services Security Token Service to generate temporary security credentials that you can use to sign requests. All KMS operations require Signature Version 4. Logging API Requests KMS supports CloudTrail, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket that you specify. By using the information collected by CloudTrail, you can determine what requests were made to KMS, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to turn it on and find your log files, see the CloudTrail User Guide. Additional Resources For more information about credentials and request signing, see the following: Amazon Web Services Security Credentials - This topic provides general information about the types of credentials used to access Amazon Web Services. Temporary Security Credentials - This section of the IAM User Guide describes how to create and use temporary security credentials. Signature Version 4 Signing Process - This set of topics walks you through the process of signing a request using an access key ID and a secret access key. Commonly Used API Operations Of the API operations discussed in this guide, the following will prove the most useful for most applications. You will likely perform operations other than these, such as creating keys and assigning policies, by using the console. Encrypt Decrypt GenerateDataKey GenerateDataKeyWithoutPlaintext

Amazon Timestream Write

Amazon Timestream is a fast, scalable, fully managed time series database service that makes it easy to store and analyze trillions of time series data points per day. With Timestream, you can easily store and analyze IoT sensor data to derive insights from your IoT applications. You can analyze industrial telemetry to streamline equipment management and maintenance. You can also store and analyze log data and metrics to improve the performance and availability of your applications. Timestream is built from the ground up to effectively ingest, process, and store time series data. It organizes data to optimize query processing. It automatically scales based on the volume of data ingested and on the query volume to ensure you receive optimal performance while inserting and querying data. As your data grows over time, Timestream’s adaptive query processing engine spans across storage tiers to provide fast analysis while reducing costs.

Amazon QuickSight

Amazon QuickSight API Reference Amazon QuickSight is a fully managed, serverless business intelligence service for the Amazon Web Services Cloud that makes it easy to extend data and insights to every user in your organization. This API reference contains documentation for a programming interface that you can use to manage Amazon QuickSight.

Other APIs in the same category

Amazon Rekognition

This is the Amazon Rekognition API reference.

RecoveryServicesBackupClient

azure.com

AWS Lake Formation

AWS Lake Formation Defines the public endpoint for the AWS Lake Formation service.

AWS Cost Explorer Service

You can use the Cost Explorer API to programmatically query your cost and usage data. You can query for aggregated data such as total monthly costs or total daily usage. You can also query for granular data. This might include the number of daily write operations for Amazon DynamoDB database tables in your production environment. Service Endpoint The Cost Explorer API provides the following endpoint: https://ce.us-east-1.amazonaws.com For information about the costs that are associated with the Cost Explorer API, see Amazon Web Services Cost Management Pricing.

Amazon Honeycode

Amazon Honeycode is a fully managed service that allows you to quickly build mobile and web apps for teams—without programming. Build Honeycode apps for managing almost anything, like projects, customers, operations, approvals, resources, and even your team.

ApiManagementClient

azure.com
Use these REST APIs for performing operations to retrieve Products by Tags in Azure API Management deployment.

CommerceManagementClient

azure.com
The Admin Commerce Management Client.

AWS Amplify

Amplify enables developers to develop and deploy cloud-powered mobile and web apps. The Amplify Console provides a continuous delivery and hosting service for web applications. For more information, see the Amplify Console User Guide. The Amplify Framework is a comprehensive set of SDKs, libraries, tools, and documentation for client app development. For more information, see the Amplify Framework.

Amazon AppIntegrations Service

The Amazon AppIntegrations service enables you to configure and reuse connections to external applications. For information about how you can use external applications with Amazon Connect, see Set up pre-built integrations in the Amazon Connect Administrator Guide.
This is AWS WAF Classic documentation. For more information, see AWS WAF Classic in the developer guide. For the latest version of AWS WAF, use the AWS WAFV2 API and see the AWS WAF Developer Guide. With the latest version, AWS WAF has a single set of endpoints for regional and global use. This is the AWS WAF Classic API Reference for using AWS WAF Classic with Amazon CloudFront. The AWS WAF Classic actions and data types listed in the reference are available for protecting Amazon CloudFront distributions. You can use these actions and data types via the endpoint waf.amazonaws.com. This guide is for developers who need detailed information about the AWS WAF Classic API actions, data types, and errors. For detailed information about AWS WAF Classic features and an overview of how to use the AWS WAF Classic API, see the AWS WAF Classic in the developer guide.

AWS IoT Jobs Data Plane

AWS IoT Jobs is a service that allows you to define a set of jobs — remote operations that are sent to and executed on one or more devices connected to AWS IoT. For example, you can define a job that instructs a set of devices to download and install application or firmware updates, reboot, rotate certificates, or perform remote troubleshooting operations. To create a job, you make a job document which is a description of the remote operations to be performed, and you specify a list of targets that should perform the operations. The targets can be individual things, thing groups or both. AWS IoT Jobs sends a message to inform the targets that a job is available. The target starts the execution of the job by downloading the job document, performing the operations it specifies, and reporting its progress to AWS IoT. The Jobs service provides commands to track the progress of a job on a specific target and for all the targets of the job

AWS Database Migration Service

Database Migration Service Database Migration Service (DMS) can migrate your data to and from the most widely used commercial and open-source databases such as Oracle, PostgreSQL, Microsoft SQL Server, Amazon Redshift, MariaDB, Amazon Aurora, MySQL, and SAP Adaptive Server Enterprise (ASE). The service supports homogeneous migrations such as Oracle to Oracle, as well as heterogeneous migrations between different database platforms, such as Oracle to MySQL or SQL Server to PostgreSQL. For more information about DMS, see What Is Database Migration Service? in the Database Migration Service User Guide.