Mock sample for your project: Amazon AppConfig API

Integrate with "Amazon AppConfig API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon AppConfig

amazonaws.com

Version: 2019-10-09


Use this API in your project

Integrate third-party APIs faster by using "Amazon AppConfig API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

AWS AppConfig Use AWS AppConfig, a capability of AWS Systems Manager, to create, manage, and quickly deploy application configurations. AppConfig supports controlled deployments to applications of any size and includes built-in validation checks and monitoring. You can use AppConfig with applications hosted on Amazon EC2 instances, AWS Lambda, containers, mobile applications, or IoT devices. To prevent errors when deploying application configurations, especially for production systems where a simple typo could cause an unexpected outage, AppConfig includes validators. A validator provides a syntactic or semantic check to ensure that the configuration you want to deploy works as intended. To validate your application configuration data, you provide a schema or a Lambda function that runs against the configuration. The configuration deployment or update can only proceed when the configuration data is valid. During a configuration deployment, AppConfig monitors the application to ensure that the deployment is successful. If the system encounters an error, AppConfig rolls back the change to minimize impact for your application users. You can configure a deployment strategy for each application or environment that includes deployment criteria, including velocity, bake time, and alarms to monitor. Similar to error monitoring, if a deployment triggers an alarm, AppConfig automatically rolls back to the previous version. AppConfig supports multiple use cases. Here are some examples. Application tuning : Use AppConfig to carefully introduce changes to your application that can only be tested with production traffic. Feature toggle : Use AppConfig to turn on new features that require a timely deployment, such as a product launch or announcement. Allow list : Use AppConfig to allow premium subscribers to access paid content. Operational issues : Use AppConfig to reduce stress on your application when a dependency or other external factor impacts the system. This reference is intended to be used with the AWS AppConfig User Guide.

Other APIs by amazonaws.com

FinSpace Public API

The FinSpace APIs let you take actions inside the FinSpace environment.

AWS Server Migration Service

AWS Server Migration Service AWS Server Migration Service (AWS SMS) makes it easier and faster for you to migrate your on-premises workloads to AWS. To learn more about AWS SMS, see the following resources: AWS Server Migration Service product page AWS Server Migration Service User Guide

Application Auto Scaling

With Application Auto Scaling, you can configure automatic scaling for the following resources: Amazon AppStream 2.0 fleets Amazon Aurora Replicas Amazon Comprehend document classification and entity recognizer endpoints Amazon DynamoDB tables and global secondary indexes throughput capacity Amazon ECS services Amazon ElastiCache for Redis clusters (replication groups) Amazon EMR clusters Amazon Keyspaces (for Apache Cassandra) tables Lambda function provisioned concurrency Amazon Managed Streaming for Apache Kafka broker storage Amazon SageMaker endpoint variants Spot Fleet (Amazon EC2) requests Custom resources provided by your own applications or services API Summary The Application Auto Scaling service API includes three key sets of actions: Register and manage scalable targets - Register Amazon Web Services or custom resources as scalable targets (a resource that Application Auto Scaling can scale), set minimum and maximum capacity limits, and retrieve information on existing scalable targets. Configure and manage automatic scaling - Define scaling policies to dynamically scale your resources in response to CloudWatch alarms, schedule one-time or recurring scaling actions, and retrieve your recent scaling activity history. Suspend and resume scaling - Temporarily suspend and later resume automatic scaling by calling the RegisterScalableTarget API action for any Application Auto Scaling scalable target. You can suspend and resume (individually or in combination) scale-out activities that are triggered by a scaling policy, scale-in activities that are triggered by a scaling policy, and scheduled scaling. To learn more about Application Auto Scaling, including information about granting IAM users required permissions for Application Auto Scaling actions, see the Application Auto Scaling User Guide.

AWS IoT Jobs Data Plane

AWS IoT Jobs is a service that allows you to define a set of jobs — remote operations that are sent to and executed on one or more devices connected to AWS IoT. For example, you can define a job that instructs a set of devices to download and install application or firmware updates, reboot, rotate certificates, or perform remote troubleshooting operations. To create a job, you make a job document which is a description of the remote operations to be performed, and you specify a list of targets that should perform the operations. The targets can be individual things, thing groups or both. AWS IoT Jobs sends a message to inform the targets that a job is available. The target starts the execution of the job by downloading the job document, performing the operations it specifies, and reporting its progress to AWS IoT. The Jobs service provides commands to track the progress of a job on a specific target and for all the targets of the job

Amazon Kinesis Video Streams

Amazon GuardDuty

Amazon GuardDuty is a continuous security monitoring service that analyzes and processes the following data sources: VPC Flow Logs, AWS CloudTrail event logs, and DNS logs. It uses threat intelligence feeds (such as lists of malicious IPs and domains) and machine learning to identify unexpected, potentially unauthorized, and malicious activity within your AWS environment. This can include issues like escalations of privileges, uses of exposed credentials, or communication with malicious IPs, URLs, or domains. For example, GuardDuty can detect compromised EC2 instances that serve malware or mine bitcoin. GuardDuty also monitors AWS account access behavior for signs of compromise. Some examples of this are unauthorized infrastructure deployments such as EC2 instances deployed in a Region that has never been used, or unusual API calls like a password policy change to reduce password strength. GuardDuty informs you of the status of your AWS environment by producing security findings that you can view in the GuardDuty console or through Amazon CloudWatch events. For more information, see the Amazon GuardDuty User Guide .

AWS Device Farm

Welcome to the AWS Device Farm API documentation, which contains APIs for: Testing on desktop browsers Device Farm makes it possible for you to test your web applications on desktop browsers using Selenium. The APIs for desktop browser testing contain TestGrid in their names. For more information, see Testing Web Applications on Selenium with Device Farm. Testing on real mobile devices Device Farm makes it possible for you to test apps on physical phones, tablets, and other devices in the cloud. For more information, see the Device Farm Developer Guide.

Amazon Connect Customer Profiles

Amazon Connect Customer Profiles Welcome to the Amazon Connect Customer Profiles API Reference. This guide provides information about the Amazon Connect Customer Profiles API, including supported operations, data types, parameters, and schemas. Amazon Connect Customer Profiles is a unified customer profile for your contact center that has pre-built connectors powered by AppFlow that make it easy to combine customer information from third party applications, such as Salesforce (CRM), ServiceNow (ITSM), and your enterprise resource planning (ERP), with contact history from your Amazon Connect contact center. If you're new to Amazon Connect , you might find it helpful to also review the Amazon Connect Administrator Guide.

AWS Elemental MediaStore Data Plane

An AWS Elemental MediaStore asset is an object, similar to an object in the Amazon S3 service. Objects are the fundamental entities that are stored in AWS Elemental MediaStore.

Amazon HealthLake

Amazon HealthLake is a HIPAA eligibile service that allows customers to store, transform, query, and analyze their FHIR-formatted data in a consistent fashion in the cloud.

AmazonApiGatewayV2

Amazon API Gateway V2

Amazon AppIntegrations Service

The Amazon AppIntegrations service enables you to configure and reuse connections to external applications. For information about how you can use external applications with Amazon Connect, see Set up pre-built integrations in the Amazon Connect Administrator Guide.

Other APIs in the same category

Azure Media Services

azure.com
This Swagger was generated by the API Framework.

Amazon Inspector

Amazon Inspector Amazon Inspector enables you to analyze the behavior of your AWS resources and to identify potential security issues. For more information, see Amazon Inspector User Guide.

Amazon Relational Database Service

Amazon Relational Database Service Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizeable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions. For the alphabetical list of data types, see Data Types. For a list of common query parameters, see Common Parameters. For descriptions of the error codes, see Common Errors. Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces. For more information about how to use the Query API, see Using the Query API.

EC2 Image Builder

EC2 Image Builder is a fully managed Amazon Web Services service that makes it easier to automate the creation, management, and deployment of customized, secure, and up-to-date "golden" server images that are pre-installed and pre-configured with software and settings to meet specific IT standards.

AWS Price List Service

Amazon Web Services Price List Service API (Amazon Web Services Price List Service) is a centralized and convenient way to programmatically query Amazon Web Services for services, products, and pricing information. The Amazon Web Services Price List Service uses standardized product attributes such as Location, Storage Class, and Operating System, and provides prices at the SKU level. You can use the Amazon Web Services Price List Service to build cost control and scenario planning tools, reconcile billing data, forecast future spend for budgeting purposes, and provide cost benefit analysis that compare your internal workloads with Amazon Web Services. Use GetServices without a service code to retrieve the service codes for all AWS services, then GetServices with a service code to retreive the attribute names for that service. After you have the service code and attribute names, you can use GetAttributeValues to see what values are available for an attribute. With the service code and an attribute name and value, you can use GetProducts to find specific products that you're interested in, such as an AmazonEC2 instance, with a Provisioned IOPS volumeType. Service Endpoint Amazon Web Services Price List Service API provides the following two endpoints: https://api.pricing.us-east-1.amazonaws.com https://api.pricing.ap-south-1.amazonaws.com

Amazon CloudWatch

Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.

AWS OpsWorks CM

AWS OpsWorks CM AWS OpsWorks for configuration management (CM) is a service that runs and manages configuration management servers. You can use AWS OpsWorks CM to create and manage AWS OpsWorks for Chef Automate and AWS OpsWorks for Puppet Enterprise servers, and add or remove nodes for the servers to manage. Glossary of terms Server : A configuration management server that can be highly-available. The configuration management server runs on an Amazon Elastic Compute Cloud (EC2) instance, and may use various other AWS services, such as Amazon Relational Database Service (RDS) and Elastic Load Balancing. A server is a generic abstraction over the configuration manager that you want to use, much like Amazon RDS. In AWS OpsWorks CM, you do not start or stop servers. After you create servers, they continue to run until they are deleted. Engine : The engine is the specific configuration manager that you want to use. Valid values in this release include ChefAutomate and Puppet. Backup : This is an application-level backup of the data that the configuration manager stores. AWS OpsWorks CM creates an S3 bucket for backups when you launch the first server. A backup maintains a snapshot of a server's configuration-related attributes at the time the backup starts. Events : Events are always related to a server. Events are written during server creation, when health checks run, when backups are created, when system maintenance is performed, etc. When you delete a server, the server's events are also deleted. Account attributes : Every account has attributes that are assigned in the AWS OpsWorks CM database. These attributes store information about configuration limits (servers, backups, etc.) and your customer account. Endpoints AWS OpsWorks CM supports the following endpoints, all HTTPS. You must connect to one of the following endpoints. Your servers can only be accessed or managed within the endpoint in which they are created. opsworks-cm.us-east-1.amazonaws.com opsworks-cm.us-east-2.amazonaws.com opsworks-cm.us-west-1.amazonaws.com opsworks-cm.us-west-2.amazonaws.com opsworks-cm.ap-northeast-1.amazonaws.com opsworks-cm.ap-southeast-1.amazonaws.com opsworks-cm.ap-southeast-2.amazonaws.com opsworks-cm.eu-central-1.amazonaws.com opsworks-cm.eu-west-1.amazonaws.com For more information, see AWS OpsWorks endpoints and quotas in the AWS General Reference. Throttling limits All API operations allow for five requests per second with a burst of 10 requests per second.

Amazon Mobile Analytics

Amazon Mobile Analytics is a service for collecting, visualizing, and understanding app usage data at scale.

InfrastructureInsightsManagementClient

azure.com
The Admin Infrastructure Insights Management Client.

Amazon Kinesis Analytics

Amazon Kinesis Data Analytics is a fully managed service that you can use to process and analyze streaming data using Java, SQL, or Scala. The service enables you to quickly author and run Java, SQL, or Scala code against streaming sources to perform time series analytics, feed real-time dashboards, and create real-time metrics.

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

Amazon Import/Export Snowball

AWS Snow Family is a petabyte-scale data transport solution that uses secure devices to transfer large amounts of data between your on-premises data centers and Amazon Simple Storage Service (Amazon S3). The Snow commands described here provide access to the same functionality that is available in the AWS Snow Family Management Console, which enables you to create and manage jobs for a Snow device. To transfer data locally with a Snow device, you'll need to use the Snowball Edge client or the Amazon S3 API Interface for Snowball or AWS OpsHub for Snow Family. For more information, see the User Guide.