Mock sample for your project: Azure SQL Database API

Integrate with "Azure SQL Database API" from azure.com in no time with Mockoon's ready to use mock sample

Azure SQL Database

azure.com

Version: 2014-04-01


Use this API in your project

Speed up your application development by using "Azure SQL Database API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
It also improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Provides read and update functionality for Azure SQL Database geo backup policies.

Other APIs by azure.com

HybridComputeManagementClient

azure.com
The Hybrid Compute Management Client.

BatchManagement

azure.com

Visual Studio Projects Resource Provider Client

azure.com
Use these APIs to manage Visual Studio Team Services resources through the Azure Resource Manager. All task operations conform to the HTTP/1.1 protocol specification and each operation returns an x-ms-request-id header that can be used to obtain information about the request. You must make sure that requests made to these resources are secure. For more information, see https://docs.microsoft.com/en-us/rest/api/index.

DevSpacesManagement

azure.com
Dev Spaces REST API

DatabricksClient

azure.com
ARM Databricks

ComputeManagementClient

azure.com
The Compute Management Client.

HDInsightManagementClient

azure.com
The HDInsight Management Client.

HDInsightManagementClient

azure.com
The HDInsight Management Client.

UsageManagementClient

azure.com

ContainerServiceClient

azure.com
The Container Service Client.

HDInsightManagementClient

azure.com
The HDInsight Management Client.

GuestConfiguration

azure.com

Other APIs in the same category

FabricAdminClient

azure.com
MAC address pool operation endpoints and objects.

Platform API

The REST API specification for Ably.

Amazon Augmented AI Runtime

Amazon Augmented AI (Amazon A2I) adds the benefit of human judgment to any machine learning application. When an AI application can't evaluate data with a high degree of confidence, human reviewers can take over. This human review is called a human review workflow. To create and start a human review workflow, you need three resources: a worker task template, a flow definition, and a human loop. For information about these resources and prerequisites for using Amazon A2I, see Get Started with Amazon Augmented AI in the Amazon SageMaker Developer Guide. This API reference includes information about API actions and data types that you can use to interact with Amazon A2I programmatically. Use this guide to: Start a human loop with the StartHumanLoop operation when using Amazon A2I with a custom task type. To learn more about the difference between custom and built-in task types, see Use Task Types. To learn how to start a human loop using this API, see Create and Start a Human Loop for a Custom Task Type in the Amazon SageMaker Developer Guide. Manage your human loops. You can list all human loops that you have created, describe individual human loops, and stop and delete human loops. To learn more, see Monitor and Manage Your Human Loop in the Amazon SageMaker Developer Guide. Amazon A2I integrates APIs from various AWS services to create and start human review workflows for those services. To learn how Amazon A2I uses these APIs, see Use APIs in Amazon A2I in the Amazon SageMaker Developer Guide.

AWSMarketplace Metering

AWS Marketplace Metering Service This reference provides descriptions of the low-level AWS Marketplace Metering Service API. AWS Marketplace sellers can use this API to submit usage data for custom usage dimensions. For information on the permissions you need to use this API, see AWS Marketing metering and entitlement API permissions in the AWS Marketplace Seller Guide. Submitting Metering Records MeterUsage - Submits the metering record for a Marketplace product. MeterUsage is called from an EC2 instance or a container running on EKS or ECS. BatchMeterUsage - Submits the metering record for a set of customers. BatchMeterUsage is called from a software-as-a-service (SaaS) application. Accepting New Customers ResolveCustomer - Called by a SaaS application during the registration process. When a buyer visits your website during the registration process, the buyer submits a Registration Token through the browser. The Registration Token is resolved through this API to obtain a CustomerIdentifier and Product Code. Entitlement and Metering for Paid Container Products Paid container software products sold through AWS Marketplace must integrate with the AWS Marketplace Metering Service and call the RegisterUsage operation for software entitlement and metering. Free and BYOL products for Amazon ECS or Amazon EKS aren't required to call RegisterUsage, but you can do so if you want to receive usage data in your seller reports. For more information on using the RegisterUsage operation, see Container-Based Products. BatchMeterUsage API calls are captured by AWS CloudTrail. You can use Cloudtrail to verify that the SaaS metering records that you sent are accurate by searching for records with the eventName of BatchMeterUsage. You can also use CloudTrail to audit records over time. For more information, see the AWS CloudTrail User Guide .

AWS IoT Fleet Hub

With Fleet Hub for AWS IoT Device Management you can build stand-alone web applications for monitoring the health of your device fleets. Fleet Hub for AWS IoT Device Management is in public preview and is subject to change.

Microsoft.ResourceHealth

azure.com
The Resource Health Client.

Amazon Kinesis Analytics

Amazon Kinesis Data Analytics is a fully managed service that you can use to process and analyze streaming data using Java, SQL, or Scala. The service enables you to quickly author and run Java, SQL, or Scala code against streaming sources to perform time series analytics, feed real-time dashboards, and create real-time metrics.
IoT IoT provides secure, bi-directional communication between Internet-connected devices (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. You can discover your custom IoT-Data endpoint to communicate with, configure rules for data processing and integration with other services, organize resources associated with each device (Registry), configure logging, and create and manage policies and credentials to authenticate devices. The service endpoints that expose this API are listed in Amazon Web Services IoT Core Endpoints and Quotas. You must use the endpoint for the region that has the resources you want to access. The service name used by Amazon Web Services Signature Version 4 to sign the request is: execute-api. For more information about how IoT works, see the Developer Guide. For information about how to use the credentials provider for IoT, see Authorizing Direct Calls to Amazon Web Services Services.

PrivateDnsManagementClient

azure.com
The Private DNS Management Client.

AWS IoT Data Plane

IoT data IoT data enables secure, bi-directional communication between Internet-connected things (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. It implements a broker for applications and things to publish messages over HTTP (Publish) and retrieve, update, and delete shadows. A shadow is a persistent representation of your things and their state in the Amazon Web Services cloud. Find the endpoint address for actions in IoT data by running this CLI command: aws iot describe-endpoint --endpoint-type iot:Data-ATS The service name used by Amazon Web ServicesSignature Version 4 to sign requests is: iotdevicegateway.

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

Amazon Kinesis Video Streams