Mock sample for your project: ManagementLockClient API

Integrate with "ManagementLockClient API" from azure.com in no time with Mockoon's ready to use mock sample

ManagementLockClient

azure.com

Version: 2016-09-01


Use this API in your project

Speed up your application development by using "ManagementLockClient API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and allow you to stop relying on an external API to get the job done. No more API keys to provision, accesses to configure or unplanned downtime, just work.
Enhance your development infrastructure by mocking third party APIs during integrating testing.

Description

Azure resources can be locked to prevent other users in your organization from deleting or modifying resources.

Other APIs by azure.com

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Product entity associated with your Azure API Management deployment. The Product entity represents a product in API Management. Products include one or more APIs and their associated terms of use. Once a product is published, developers can subscribe to the product and begin to use the product’s APIs.

Azure Log Analytics

azure.com
Azure Log Analytics API reference

ContainerServiceClient

azure.com
The Container Service Client.

SubscriptionsManagementClient

azure.com
The Admin Subscriptions Management Client.

Update Management

azure.com
APIs for managing software update configurations.

FabricAdminClient

azure.com
Edge gateway operation endpoints and objects.

AutomationManagement

azure.com

FabricAdminClient

azure.com
Scale unit node operation endpoints and objects.

Azure Log Analytics Query Packs

azure.com
Azure Log Analytics API reference for management of saved Queries within Query Packs.

AzureBridgeAdminClient

azure.com
AzureBridge Admin Client.

Artifact

azure.com

ContainerInstanceManagementClient

azure.com

Other APIs in the same category

SearchIndexClient

azure.com
Client that can be used to query an index and upload, merge, or delete documents.

ComputeDiskAdminManagementClient

azure.com
The Admin Compute Disk Management Client.

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

Elastic Load Balancing

Elastic Load Balancing A load balancer distributes incoming traffic across targets, such as your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered targets and ensures that it routes traffic only to healthy targets. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer. You configure a target group with a protocol and port number for connections from the load balancer to the targets, and with health check settings to be used when checking the health status of the targets. Elastic Load Balancing supports the following types of load balancers: Application Load Balancers, Network Load Balancers, Gateway Load Balancers, and Classic Load Balancers. This reference covers the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). For more information, see the Elastic Load Balancing User Guide. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds.

AWS Data Pipeline

AWS Data Pipeline configures and manages a data-driven workflow called a pipeline. AWS Data Pipeline handles the details of scheduling and ensuring that data dependencies are met so that your application can focus on processing the data. AWS Data Pipeline provides a JAR implementation of a task runner called AWS Data Pipeline Task Runner. AWS Data Pipeline Task Runner provides logic for common data management scenarios, such as performing database queries and running data analysis using Amazon Elastic MapReduce (Amazon EMR). You can use AWS Data Pipeline Task Runner as your task runner, or you can write your own task runner to provide custom data management. AWS Data Pipeline implements two main sets of functionality. Use the first set to create a pipeline and define data sources, schedules, dependencies, and the transforms to be performed on the data. Use the second set in your task runner application to receive the next task ready for processing. The logic for performing the task, such as querying the data, running data analysis, or converting the data from one format to another, is contained within the task runner. The task runner performs the task assigned to it by the web service, reporting progress to the web service as it does so. When the task is done, the task runner reports the final success or failure of the task to the web service.

BlockchainManagementClient

azure.com
REST API for Azure Blockchain Service

AutomationManagement

azure.com

Mixed Reality

azure.com
Mixed Reality Resource Provider Spatial Anchors Resource API

HDInsightManagementClient

azure.com
The HDInsight Management Client.

Amazon CloudWatch Events

Amazon EventBridge helps you to respond to state changes in your Amazon Web Services resources. When your resources change state, they automatically send events to an event stream. You can create rules that match selected events in the stream and route them to targets to take action. You can also use rules to take action on a predetermined schedule. For example, you can configure rules to: Automatically invoke an Lambda function to update DNS entries when an event notifies you that Amazon EC2 instance enters the running state. Direct specific API records from CloudTrail to an Amazon Kinesis data stream for detailed analysis of potential security or availability risks. Periodically invoke a built-in target to create a snapshot of an Amazon EBS volume. For more information about the features of Amazon EventBridge, see the Amazon EventBridge User Guide.

NetworkAdminManagementClient

azure.com
Public IP Address admin endpoints and objects.

Content Moderator Client

azure.com
You use the API to scan your content as it is generated. Content Moderator then processes your content and sends the results along with relevant information either back to your systems or to the built-in review tool. You can use this information to take decisions e.g. take it down, send to human judge, etc.
When using the API, images need to have a minimum of 128 pixels and a maximum file size of 4MB.
Text can be at most 1024 characters long.
If the content passed to the text API or the image API exceeds the size limits, the API will return an error code that informs about the issue.