Mock sample for your project: ApiManagementClient API

Integrate with "ApiManagementClient API" from azure.com in no time with Mockoon's ready to use mock sample

ApiManagementClient

azure.com

Version: 2019-12-01-preview


Use this API in your project

Integrate third-party APIs faster by using "ApiManagementClient API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
Improve your integration tests by mocking third-party APIs and cover more edge cases: slow response time, random failures, etc.

Description

Use these REST APIs for performing operations on Diagnostic entity associated with your Azure API Management deployment. Diagnostics are used to log requests/responses in the APIM proxy.

Other APIs by azure.com

SqlManagementClient

azure.com
The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.

UpdateAdminClient

azure.com
The Update Admin Management Client.

SubscriptionsManagementClient

azure.com
The Admin Subscriptions Management Client.

ApiManagementClient

azure.com
Use these REST APIs for getting the network connectivity status of your Azure API Management deployment. When the API Management service is deployed inside a Virtual Network, it needs to have access to other Azure resources it depends on. This also gives details about the DNS Servers visible to Azure API Management deployment.

Azure Addons Resource Provider

azure.com
The service for managing third party addons.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on tenant entity associated with your Azure API Management deployment. Using this entity you can manage properties and configuration that apply to the entire API Management service instance.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Email Templates associated with your Azure API Management deployment.

FabricAdminClient

azure.com
Infrastructure role operation endpoints and objects.

PolicyTrackedResourcesClient

azure.com

FabricAdminClient

azure.com
The Admin Fabric Management Client.

SubscriptionClient

azure.com
The User Subscription Management Client.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Quota entity associated with your Azure API Management deployment. To configure call rate limit and quota policies refer to how to configure call rate limit and quota.

Other APIs in the same category

Azure SQL Server Backup Long Term Retention Vault

azure.com
Provides read and update functionality for Azure SQL Server backup long term retention vault

Amazon Elastic Inference

Elastic Inference public APIs.

SubscriptionsManagementClient

azure.com
The Admin Subscriptions Management Client.

Amazon CodeGuru Profiler

This section provides documentation for the Amazon CodeGuru Profiler API operations. Amazon CodeGuru Profiler collects runtime performance data from your live applications, and provides recommendations that can help you fine-tune your application performance. Using machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of code and suggest ways you can improve efficiency and remove CPU bottlenecks. Amazon CodeGuru Profiler provides different visualizations of profiling data to help you identify what code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU utilization. Amazon CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM) languages and Python. While CodeGuru Profiler supports both visualizations and recommendations for applications written in Java, it can also generate visualizations and a subset of recommendations for applications written in other JVM languages and Python. For more information, see What is Amazon CodeGuru Profiler in the Amazon CodeGuru Profiler User Guide.

AWS IoT Jobs Data Plane

AWS IoT Jobs is a service that allows you to define a set of jobs — remote operations that are sent to and executed on one or more devices connected to AWS IoT. For example, you can define a job that instructs a set of devices to download and install application or firmware updates, reboot, rotate certificates, or perform remote troubleshooting operations. To create a job, you make a job document which is a description of the remote operations to be performed, and you specify a list of targets that should perform the operations. The targets can be individual things, thing groups or both. AWS IoT Jobs sends a message to inform the targets that a job is available. The target starts the execution of the job by downloading the job document, performing the operations it specifies, and reporting its progress to AWS IoT. The Jobs service provides commands to track the progress of a job on a specific target and for all the targets of the job

Amazon Personalize Runtime

AWS IoT Secure Tunneling

AWS IoT Secure Tunneling AWS IoT Secure Tunnling enables you to create remote connections to devices deployed in the field. For more information about how AWS IoT Secure Tunneling works, see AWS IoT Secure Tunneling.

Amazon Lookout for Equipment

Amazon Lookout for Equipment is a machine learning service that uses advanced analytics to identify anomalies in machines from sensor data for use in predictive maintenance.

AWS CloudFormation

AWS CloudFormation CloudFormation allows you to create and manage Amazon Web Services infrastructure deployments predictably and repeatedly. You can use CloudFormation to leverage Amazon Web Services products, such as Amazon Elastic Compute Cloud, Amazon Elastic Block Store, Amazon Simple Notification Service, Elastic Load Balancing, and Auto Scaling to build highly-reliable, highly scalable, cost-effective applications without creating or configuring the underlying Amazon Web Services infrastructure. With CloudFormation, you declare all of your resources and dependencies in a template file. The template defines a collection of resources as a single unit called a stack. CloudFormation creates and deletes all member resources of the stack together and manages all dependencies between the resources for you. For more information about CloudFormation, see the CloudFormation Product Page. CloudFormation makes use of other Amazon Web Services products. If you need additional technical information about a specific Amazon Web Services product, you can find the product's technical documentation at docs.aws.amazon.com .

Amazon Athena

Amazon Athena is an interactive query service that lets you use standard SQL to analyze data directly in Amazon S3. You can point Athena at your data in Amazon S3 and run ad-hoc queries and get results in seconds. Athena is serverless, so there is no infrastructure to set up or manage. You pay only for the queries you run. Athena scales automatically—executing queries in parallel—so results are fast, even with large datasets and complex queries. For more information, see What is Amazon Athena in the Amazon Athena User Guide. If you connect to Athena using the JDBC driver, use version 1.1.0 of the driver or later with the Amazon Athena API. Earlier version drivers do not support the API. For more information and to download the driver, see Accessing Amazon Athena with JDBC. For code samples using the Amazon Web Services SDK for Java, see Examples and Code Samples in the Amazon Athena User Guide.

AWS Elemental MediaStore

An AWS Elemental MediaStore container is a namespace that holds folders and objects. You use a container endpoint to create, read, and delete objects.

AWS Data Pipeline

AWS Data Pipeline configures and manages a data-driven workflow called a pipeline. AWS Data Pipeline handles the details of scheduling and ensuring that data dependencies are met so that your application can focus on processing the data. AWS Data Pipeline provides a JAR implementation of a task runner called AWS Data Pipeline Task Runner. AWS Data Pipeline Task Runner provides logic for common data management scenarios, such as performing database queries and running data analysis using Amazon Elastic MapReduce (Amazon EMR). You can use AWS Data Pipeline Task Runner as your task runner, or you can write your own task runner to provide custom data management. AWS Data Pipeline implements two main sets of functionality. Use the first set to create a pipeline and define data sources, schedules, dependencies, and the transforms to be performed on the data. Use the second set in your task runner application to receive the next task ready for processing. The logic for performing the task, such as querying the data, running data analysis, or converting the data from one format to another, is contained within the task runner. The task runner performs the task assigned to it by the web service, reporting progress to the web service as it does so. When the task is done, the task runner reports the final success or failure of the task to the web service.