Mock sample for your project: AWS Elemental MediaPackage API

Integrate with "AWS Elemental MediaPackage API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS Elemental MediaPackage

amazonaws.com

Version: 2017-10-12


Use this API in your project

Speed up your application development by using "AWS Elemental MediaPackage API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and allow you to stop relying on an external API to get the job done. No more API keys to provision, accesses to configure or unplanned downtime, just work.
Enhance your development infrastructure by mocking third party APIs during integrating testing.

Description

AWS Elemental MediaPackage

Other APIs by amazonaws.com

Amazon Elastic Block Store

You can use the Amazon Elastic Block Store (Amazon EBS) direct APIs to create Amazon EBS snapshots, write data directly to your snapshots, read data on your snapshots, and identify the differences or changes between two snapshots. If you’re an independent software vendor (ISV) who offers backup services for Amazon EBS, the EBS direct APIs make it more efficient and cost-effective to track incremental changes on your Amazon EBS volumes through snapshots. This can be done without having to create new volumes from snapshots, and then use Amazon Elastic Compute Cloud (Amazon EC2) instances to compare the differences. You can create incremental snapshots directly from data on-premises into volumes and the cloud to use for quick disaster recovery. With the ability to write and read snapshots, you can write your on-premises data to an snapshot during a disaster. Then after recovery, you can restore it back to Amazon Web Services or on-premises from the snapshot. You no longer need to build and maintain complex mechanisms to copy data to and from Amazon EBS. This API reference provides detailed information about the actions, data types, parameters, and errors of the EBS direct APIs. For more information about the elements that make up the EBS direct APIs, and examples of how to use them effectively, see Accessing the Contents of an Amazon EBS Snapshot in the Amazon Elastic Compute Cloud User Guide. For more information about the supported Amazon Web Services Regions, endpoints, and service quotas for the EBS direct APIs, see Amazon Elastic Block Store Endpoints and Quotas in the Amazon Web Services General Reference.

AWS Organizations

AWS Organizations is a web service that enables you to consolidate your multiple AWS accounts into an organization and centrally manage your accounts and their resources. This guide provides descriptions of the Organizations operations. For more information about using this service, see the AWS Organizations User Guide. Support and feedback for AWS Organizations We welcome your feedback. Send your comments to [email protected] or post your feedback and questions in the AWS Organizations support forum. For more information about the AWS support forums, see Forums Help. Endpoint to call When using the AWS CLI or the AWS SDK For the current release of Organizations, specify the us-east-1 region for all AWS API and AWS CLI calls made from the commercial AWS Regions outside of China. If calling from one of the AWS Regions in China, then specify cn-northwest-1. You can do this in the AWS CLI by using these parameters and commands: Use the following parameter with each command to specify both the endpoint and its region: --endpoint-url https://organizations.us-east-1.amazonaws.com (from commercial AWS Regions outside of China) or --endpoint-url https://organizations.cn-northwest-1.amazonaws.com.cn (from AWS Regions in China) Use the default endpoint, but configure your default region with this command: aws configure set default.region us-east-1 (from commercial AWS Regions outside of China) or aws configure set default.region cn-northwest-1 (from AWS Regions in China) Use the following parameter with each command to specify the endpoint: --region us-east-1 (from commercial AWS Regions outside of China) or --region cn-northwest-1 (from AWS Regions in China) Recording API Requests AWS Organizations supports AWS CloudTrail, a service that records AWS API calls for your AWS account and delivers log files to an Amazon S3 bucket. By using information collected by AWS CloudTrail, you can determine which requests the Organizations service received, who made the request and when, and so on. For more about AWS Organizations and its support for AWS CloudTrail, see Logging AWS Organizations Events with AWS CloudTrail in the AWS Organizations User Guide. To learn more about AWS CloudTrail, including how to turn it on and find your log files, see the AWS CloudTrail User Guide.

Amazon Interactive Video Service

Introduction The Amazon Interactive Video Service (IVS) API is REST compatible, using a standard HTTP API and an AWS EventBridge event stream for responses. JSON is used for both requests and responses, including errors. The API is an AWS regional service, currently in these regions: us-west-2, us-east-1, and eu-west-1. All API request parameters and URLs are case sensitive. For a summary of notable documentation changes in each release, see Document History. Service Endpoints The following are the Amazon IVS service endpoints (all HTTPS): Region name: US West (Oregon) Region: us-west-2 Endpoint: ivs.us-west-2.amazonaws.com Region name: US East (Virginia) Region: us-east-1 Endpoint: ivs.us-east-1.amazonaws.com Region name: EU West (Dublin) Region: eu-west-1 Endpoint: ivs.eu-west-1.amazonaws.com Allowed Header Values Accept: application/json Accept-Encoding: gzip, deflate Content-Type: application/json Resources The following resources contain information about your IVS live stream (see Getting Started with Amazon IVS): Channel β€” Stores configuration data related to your live stream. You first create a channel and then use the channel’s stream key to start your live stream. See the Channel endpoints for more information. Stream key β€” An identifier assigned by Amazon IVS when you create a channel, which is then used to authorize streaming. See the StreamKey endpoints for more information. Treat the stream key like a secret, since it allows anyone to stream to the channel. Playback key pair β€” Video playback may be restricted using playback-authorization tokens, which use public-key encryption. A playback key pair is the public-private pair of keys used to sign and validate the playback-authorization token. See the PlaybackKeyPair endpoints for more information. Recording configuration β€” Stores configuration related to recording a live stream and where to store the recorded content. Multiple channels can reference the same recording configuration. See the Recording Configuration endpoints for more information. Tagging A tag is a metadata label that you assign to an AWS resource. A tag comprises a key and a value, both set by you. For example, you might set a tag as topic:nature to label a particular video category. See Tagging AWS Resources for more information, including restrictions that apply to tags. Tags can help you identify and organize your AWS resources. For example, you can use the same tag for different resources to indicate that they are related. You can also use tags to manage access (see Access Tags). The Amazon IVS API has these tag-related endpoints: TagResource, UntagResource, and ListTagsForResource. The following resources support tagging: Channels, Stream Keys, Playback Key Pairs, and Recording Configurations. Authentication versus Authorization Note the differences between these concepts: Authentication is about verifying identity. You need to be authenticated to sign Amazon IVS API requests. Authorization is about granting permissions. You need to be authorized to view Amazon IVS private channels. (Private channels are channels that are enabled for "playback authorization.") Authentication All Amazon IVS API requests must be authenticated with a signature. The AWS Command-Line Interface (CLI) and Amazon IVS Player SDKs take care of signing the underlying API calls for you. However, if your application calls the Amazon IVS API directly, it’s your responsibility to sign the requests. You generate a signature using valid AWS credentials that have permission to perform the requested action. For example, you must sign PutMetadata requests with a signature generated from an IAM user account that has the ivs:PutMetadata permission. For more information: Authentication and generating signatures β€” See Authenticating Requests (AWS Signature Version 4) in the AWS General Reference. Managing Amazon IVS permissions β€” See Identity and Access Management on the Security page of the Amazon IVS User Guide. Channel Endpoints CreateChannel β€” Creates a new channel and an associated stream key to start streaming. GetChannel β€” Gets the channel configuration for the specified channel ARN (Amazon Resource Name). BatchGetChannel β€” Performs GetChannel on multiple ARNs simultaneously. ListChannels β€” Gets summary information about all channels in your account, in the AWS region where the API request is processed. This list can be filtered to match a specified name or recording-configuration ARN. Filters are mutually exclusive and cannot be used together. If you try to use both filters, you will get an error (409 Conflict Exception). UpdateChannel β€” Updates a channel's configuration. This does not affect an ongoing stream of this channel. You must stop and restart the stream for the changes to take effect. DeleteChannel β€” Deletes the specified channel. StreamKey Endpoints CreateStreamKey β€” Creates a stream key, used to initiate a stream, for the specified channel ARN. GetStreamKey β€” Gets stream key information for the specified ARN. BatchGetStreamKey β€” Performs GetStreamKey on multiple ARNs simultaneously. ListStreamKeys β€” Gets summary information about stream keys for the specified channel. DeleteStreamKey β€” Deletes the stream key for the specified ARN, so it can no longer be used to stream. Stream Endpoints GetStream β€” Gets information about the active (live) stream on a specified channel. ListStreams β€” Gets summary information about live streams in your account, in the AWS region where the API request is processed. StopStream β€” Disconnects the incoming RTMPS stream for the specified channel. Can be used in conjunction with DeleteStreamKey to prevent further streaming to a channel. PutMetadata β€” Inserts metadata into the active stream of the specified channel. A maximum of 5 requests per second per channel is allowed, each with a maximum 1 KB payload. (If 5 TPS is not sufficient for your needs, we recommend batching your data into a single PutMetadata call.) PlaybackKeyPair Endpoints For more information, see Setting Up Private Channels in the Amazon IVS User Guide. ImportPlaybackKeyPair β€” Imports the public portion of a new key pair and returns its arn and fingerprint. The privateKey can then be used to generate viewer authorization tokens, to grant viewers access to private channels (channels enabled for playback authorization). GetPlaybackKeyPair β€” Gets a specified playback authorization key pair and returns the arn and fingerprint. The privateKey held by the caller can be used to generate viewer authorization tokens, to grant viewers access to private channels. ListPlaybackKeyPairs β€” Gets summary information about playback key pairs. DeletePlaybackKeyPair β€” Deletes a specified authorization key pair. This invalidates future viewer tokens generated using the key pair’s privateKey. RecordingConfiguration Endpoints CreateRecordingConfiguration β€” Creates a new recording configuration, used to enable recording to Amazon S3. GetRecordingConfiguration β€” Gets the recording-configuration metadata for the specified ARN. ListRecordingConfigurations β€” Gets summary information about all recording configurations in your account, in the AWS region where the API request is processed. DeleteRecordingConfiguration β€” Deletes the recording configuration for the specified ARN. AWS Tags Endpoints TagResource β€” Adds or updates tags for the AWS resource with the specified ARN. UntagResource β€” Removes tags from the resource with the specified ARN. ListTagsForResource β€” Gets information about AWS tags for the specified ARN.

Amazon GameLift

Amazon GameLift Service GameLift provides solutions for hosting session-based multiplayer game servers in the cloud, including tools for deploying, operating, and scaling game servers. Built on AWS global computing infrastructure, GameLift helps you deliver high-performance, high-reliability, low-cost game servers while dynamically scaling your resource usage to meet player demand. About GameLift solutions Get more information on these GameLift solutions in the GameLift Developer Guide. GameLift managed hosting -- GameLift offers a fully managed service to set up and maintain computing machines for hosting, manage game session and player session life cycle, and handle security, storage, and performance tracking. You can use automatic scaling tools to balance player demand and hosting costs, configure your game session management to minimize player latency, and add FlexMatch for matchmaking. Managed hosting with Realtime Servers -- With GameLift Realtime Servers, you can quickly configure and set up ready-to-go game servers for your game. Realtime Servers provides a game server framework with core GameLift infrastructure already built in. Then use the full range of GameLift managed hosting features, including FlexMatch, for your game. GameLift FleetIQ -- Use GameLift FleetIQ as a standalone service while hosting your games using EC2 instances and Auto Scaling groups. GameLift FleetIQ provides optimizations for game hosting, including boosting the viability of low-cost Spot Instances gaming. For a complete solution, pair the GameLift FleetIQ and FlexMatch standalone services. GameLift FlexMatch -- Add matchmaking to your game hosting solution. FlexMatch is a customizable matchmaking service for multiplayer games. Use FlexMatch as integrated with GameLift managed hosting or incorporate FlexMatch as a standalone service into your own hosting solution. About this API Reference This reference guide describes the low-level service API for Amazon GameLift. With each topic in this guide, you can find links to language-specific SDK guides and the AWS CLI reference. Useful links: GameLift API operations listed by tasks GameLift tools and resources

Amazon Prometheus Service

Amazon Managed Service for Prometheus

Amazon EC2 Container Registry

Amazon Elastic Container Registry Amazon Elastic Container Registry (Amazon ECR) is a managed container image registry service. Customers can use the familiar Docker CLI, or their preferred client, to push, pull, and manage images. Amazon ECR provides a secure, scalable, and reliable registry for your Docker or Open Container Initiative (OCI) images. Amazon ECR supports private repositories with resource-based permissions using IAM so that specific users or Amazon EC2 instances can access repositories and images. Amazon ECR has service endpoints in each supported Region. For more information, see Amazon ECR endpoints in the Amazon Web Services General Reference.

AWS IoT Core Device Advisor

AWS IoT Core Device Advisor is a cloud-based, fully managed test capability for validating IoT devices during device software development. Device Advisor provides pre-built tests that you can use to validate IoT devices for reliable and secure connectivity with AWS IoT Core before deploying devices to production. By using Device Advisor, you can confirm that your devices can connect to AWS IoT Core, follow security best practices and, if applicable, receive software updates from IoT Device Management. You can also download signed qualification reports to submit to the AWS Partner Network to get your device qualified for the AWS Partner Device Catalog without the need to send your device in and wait for it to be tested.

Amazon Glacier

Amazon S3 Glacier (Glacier) is a storage solution for "cold data." Glacier is an extremely low-cost storage service that provides secure, durable, and easy-to-use storage for data backup and archival. With Glacier, customers can store their data cost effectively for months, years, or decades. Glacier also enables customers to offload the administrative burdens of operating and scaling storage to AWS, so they don't have to worry about capacity planning, hardware provisioning, data replication, hardware failure and recovery, or time-consuming hardware migrations. Glacier is a great storage choice when low storage cost is paramount and your data is rarely retrieved. If your application requires fast or frequent access to your data, consider using Amazon S3. For more information, see Amazon Simple Storage Service (Amazon S3). You can store any kind of data in any format. There is no maximum limit on the total amount of data you can store in Glacier. If you are a first-time user of Glacier, we recommend that you begin by reading the following sections in the Amazon S3 Glacier Developer Guide : What is Amazon S3 Glacier - This section of the Developer Guide describes the underlying data model, the operations it supports, and the AWS SDKs that you can use to interact with the service. Getting Started with Amazon S3 Glacier - The Getting Started section walks you through the process of creating a vault, uploading archives, creating jobs to download archives, retrieving the job output, and deleting archives.

Amazon Neptune

Amazon Neptune Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. The core of Amazon Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with milliseconds latency. Amazon Neptune supports popular graph models Property Graph and W3C's RDF, and their respective query languages Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune powers graph use cases such as recommendation engines, fraud detection, knowledge graphs, drug discovery, and network security. This interface reference for Amazon Neptune contains documentation for a programming or command line interface you can use to manage Amazon Neptune. Note that Amazon Neptune is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide.

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

Amazon Machine Learning

Definition of the public APIs exposed by Amazon Machine Learning

Amazon Location Service

Suite of geospatial services including Maps, Places, Routes, Tracking, and Geofencing

Other APIs in the same category

VirtualWANAsAServiceManagementClient

azure.com
REST API for Azure VirtualWAN As a Service.

MicrosoftSerialConsoleClient

azure.com
The Azure Serial Console allows you to access the serial console of a Virtual Machine or VM scale set instance

SqlManagementClient

azure.com
The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.

PolicyClient

azure.com
To manage and control access to your resources, you can define customized policies and assign them at a scope.

Security Center

azure.com
API spec for Microsoft.Security (Azure Security Center) resource provider

Security Center

azure.com
API spec for Microsoft.Security (Azure Security Center) resource provider

Security Center

azure.com
API spec for Microsoft.Security (Azure Security Center) resource provider

DeploymentScriptsClient

azure.com
The APIs listed in this specification can be used to manage Deployment Scripts resource through the Azure Resource Manager.

DataBoxManagementClient

azure.com

SearchManagementClient

azure.com
Client that can be used to manage Azure Cognitive Search services and API keys.

PolicyClient

azure.com
To manage and control access to your resources, you can define customized policies and assign them at a scope.

PolicyMetadataClient

azure.com