Mock sample for your project: Amazon CodeGuru Reviewer API

Integrate with "Amazon CodeGuru Reviewer API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon CodeGuru Reviewer

amazonaws.com

Version: 2019-09-19


Use this API in your project

Start working with "Amazon CodeGuru Reviewer API" right away by using this ready-to-use mock sample. API mocking can greatly speed up your application development by removing all the tedious tasks or issues: API key provisioning, account creation, unplanned downtime, etc.
It also helps reduce your dependency on third-party APIs and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

This section provides documentation for the Amazon CodeGuru Reviewer API operations. CodeGuru Reviewer is a service that uses program analysis and machine learning to detect potential defects that are difficult for developers to find and recommends fixes in your Java and Python code. By proactively detecting and providing recommendations for addressing code defects and implementing best practices, CodeGuru Reviewer improves the overall quality and maintainability of your code base during the code review stage. For more information about CodeGuru Reviewer, see the Amazon CodeGuru Reviewer User Guide. To improve the security of your CodeGuru Reviewer API calls, you can establish a private connection between your VPC and CodeGuru Reviewer by creating an interface VPC endpoint. For more information, see CodeGuru Reviewer and interface VPC endpoints (Amazon Web Services PrivateLink) in the Amazon CodeGuru Reviewer User Guide.

Other APIs by amazonaws.com

Amazon Textract

Amazon Textract detects and analyzes text in documents and converts it into machine-readable text. This is the API reference documentation for Amazon Textract.

AWS Import/Export

AWS Import/Export Service AWS Import/Export accelerates transferring large amounts of data between the AWS cloud and portable storage devices that you mail to us. AWS Import/Export transfers data directly onto and off of your storage devices using Amazon's high-speed internal network and bypassing the Internet. For large data sets, AWS Import/Export is often faster than Internet transfer and more cost effective than upgrading your connectivity.

AWS Backup

Backup Backup is a unified backup service designed to protect Amazon Web Services services and their associated data. Backup simplifies the creation, migration, restoration, and deletion of backups, while also providing reporting and auditing.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud Amazon Elastic Compute Cloud (Amazon EC2) provides secure and resizable computing capacity in the AWS Cloud. Using Amazon EC2 eliminates the need to invest in hardware up front, so you can develop and deploy applications faster. Amazon Virtual Private Cloud (Amazon VPC) enables you to provision a logically isolated section of the AWS Cloud where you can launch AWS resources in a virtual network that you've defined. Amazon Elastic Block Store (Amazon EBS) provides block level storage volumes for use with EC2 instances. EBS volumes are highly available and reliable storage volumes that can be attached to any running instance and used like a hard drive. To learn more, see the following resources: Amazon EC2: AmazonEC2 product page, Amazon EC2 documentation Amazon EBS: Amazon EBS product page, Amazon EBS documentation Amazon VPC: Amazon VPC product page, Amazon VPC documentation AWS VPN: AWS VPN product page, AWS VPN documentation

AWS CodeStar

AWS CodeStar This is the API reference for AWS CodeStar. This reference provides descriptions of the operations and data types for the AWS CodeStar API along with usage examples. You can use the AWS CodeStar API to work with: Projects and their resources, by calling the following: DeleteProject, which deletes a project. DescribeProject, which lists the attributes of a project. ListProjects, which lists all projects associated with your AWS account. ListResources, which lists the resources associated with a project. ListTagsForProject, which lists the tags associated with a project. TagProject, which adds tags to a project. UntagProject, which removes tags from a project. UpdateProject, which updates the attributes of a project. Teams and team members, by calling the following: AssociateTeamMember, which adds an IAM user to the team for a project. DisassociateTeamMember, which removes an IAM user from the team for a project. ListTeamMembers, which lists all the IAM users in the team for a project, including their roles and attributes. UpdateTeamMember, which updates a team member's attributes in a project. Users, by calling the following: CreateUserProfile, which creates a user profile that contains data associated with the user across all projects. DeleteUserProfile, which deletes all user profile information across all projects. DescribeUserProfile, which describes the profile of a user. ListUserProfiles, which lists all user profiles. UpdateUserProfile, which updates the profile for a user.

AWS IoT Greengrass V2

IoT Greengrass brings local compute, messaging, data management, sync, and ML inference capabilities to edge devices. This enables devices to collect and analyze data closer to the source of information, react autonomously to local events, and communicate securely with each other on local networks. Local devices can also communicate securely with Amazon Web Services IoT Core and export IoT data to the Amazon Web Services Cloud. IoT Greengrass developers can use Lambda functions and components to create and deploy applications to fleets of edge devices for local operation. IoT Greengrass Version 2 provides a new major version of the IoT Greengrass Core software, new APIs, and a new console. Use this API reference to learn how to use the IoT Greengrass V2 API operations to manage components, manage deployments, and core devices. For more information, see What is IoT Greengrass? in the IoT Greengrass V2 Developer Guide.

AWS Budgets

The AWS Budgets API enables you to use AWS Budgets to plan your service usage, service costs, and instance reservations. The API reference provides descriptions, syntax, and usage examples for each of the actions and data types for AWS Budgets. Budgets provide you with a way to see the following information: How close your plan is to your budgeted amount or to the free tier limits Your usage-to-date, including how much you've used of your Reserved Instances (RIs) Your current estimated charges from AWS, and how much your predicted usage will accrue in charges by the end of the month How much of your budget has been used AWS updates your budget status several times a day. Budgets track your unblended costs, subscriptions, refunds, and RIs. You can create the following types of budgets: Cost budgets - Plan how much you want to spend on a service. Usage budgets - Plan how much you want to use one or more services. RI utilization budgets - Define a utilization threshold, and receive alerts when your RI usage falls below that threshold. This lets you see if your RIs are unused or under-utilized. RI coverage budgets - Define a coverage threshold, and receive alerts when the number of your instance hours that are covered by RIs fall below that threshold. This lets you see how much of your instance usage is covered by a reservation. Service Endpoint The AWS Budgets API provides the following endpoint: https://budgets.amazonaws.com For information about costs that are associated with the AWS Budgets API, see AWS Cost Management Pricing.
The Amazon Braket API Reference provides information about the operations and structures supported in Amazon Braket.

AmazonApiGatewayManagementApi

The Amazon API Gateway Management API allows you to directly manage runtime aspects of your deployed APIs. To use it, you must explicitly set the SDK's endpoint to point to the endpoint of your deployed API. The endpoint will be of the form https://{api-id}.execute-api.{region}.amazonaws.com/{stage}, or will be the endpoint corresponding to your API's custom domain and base path, if applicable.

Amazon Interactive Video Service

Introduction The Amazon Interactive Video Service (IVS) API is REST compatible, using a standard HTTP API and an AWS EventBridge event stream for responses. JSON is used for both requests and responses, including errors. The API is an AWS regional service, currently in these regions: us-west-2, us-east-1, and eu-west-1. All API request parameters and URLs are case sensitive. For a summary of notable documentation changes in each release, see Document History. Service Endpoints The following are the Amazon IVS service endpoints (all HTTPS): Region name: US West (Oregon) Region: us-west-2 Endpoint: ivs.us-west-2.amazonaws.com Region name: US East (Virginia) Region: us-east-1 Endpoint: ivs.us-east-1.amazonaws.com Region name: EU West (Dublin) Region: eu-west-1 Endpoint: ivs.eu-west-1.amazonaws.com Allowed Header Values Accept: application/json Accept-Encoding: gzip, deflate Content-Type: application/json Resources The following resources contain information about your IVS live stream (see Getting Started with Amazon IVS): Channel β€” Stores configuration data related to your live stream. You first create a channel and then use the channel’s stream key to start your live stream. See the Channel endpoints for more information. Stream key β€” An identifier assigned by Amazon IVS when you create a channel, which is then used to authorize streaming. See the StreamKey endpoints for more information. Treat the stream key like a secret, since it allows anyone to stream to the channel. Playback key pair β€” Video playback may be restricted using playback-authorization tokens, which use public-key encryption. A playback key pair is the public-private pair of keys used to sign and validate the playback-authorization token. See the PlaybackKeyPair endpoints for more information. Recording configuration β€” Stores configuration related to recording a live stream and where to store the recorded content. Multiple channels can reference the same recording configuration. See the Recording Configuration endpoints for more information. Tagging A tag is a metadata label that you assign to an AWS resource. A tag comprises a key and a value, both set by you. For example, you might set a tag as topic:nature to label a particular video category. See Tagging AWS Resources for more information, including restrictions that apply to tags. Tags can help you identify and organize your AWS resources. For example, you can use the same tag for different resources to indicate that they are related. You can also use tags to manage access (see Access Tags). The Amazon IVS API has these tag-related endpoints: TagResource, UntagResource, and ListTagsForResource. The following resources support tagging: Channels, Stream Keys, Playback Key Pairs, and Recording Configurations. Authentication versus Authorization Note the differences between these concepts: Authentication is about verifying identity. You need to be authenticated to sign Amazon IVS API requests. Authorization is about granting permissions. You need to be authorized to view Amazon IVS private channels. (Private channels are channels that are enabled for "playback authorization.") Authentication All Amazon IVS API requests must be authenticated with a signature. The AWS Command-Line Interface (CLI) and Amazon IVS Player SDKs take care of signing the underlying API calls for you. However, if your application calls the Amazon IVS API directly, it’s your responsibility to sign the requests. You generate a signature using valid AWS credentials that have permission to perform the requested action. For example, you must sign PutMetadata requests with a signature generated from an IAM user account that has the ivs:PutMetadata permission. For more information: Authentication and generating signatures β€” See Authenticating Requests (AWS Signature Version 4) in the AWS General Reference. Managing Amazon IVS permissions β€” See Identity and Access Management on the Security page of the Amazon IVS User Guide. Channel Endpoints CreateChannel β€” Creates a new channel and an associated stream key to start streaming. GetChannel β€” Gets the channel configuration for the specified channel ARN (Amazon Resource Name). BatchGetChannel β€” Performs GetChannel on multiple ARNs simultaneously. ListChannels β€” Gets summary information about all channels in your account, in the AWS region where the API request is processed. This list can be filtered to match a specified name or recording-configuration ARN. Filters are mutually exclusive and cannot be used together. If you try to use both filters, you will get an error (409 Conflict Exception). UpdateChannel β€” Updates a channel's configuration. This does not affect an ongoing stream of this channel. You must stop and restart the stream for the changes to take effect. DeleteChannel β€” Deletes the specified channel. StreamKey Endpoints CreateStreamKey β€” Creates a stream key, used to initiate a stream, for the specified channel ARN. GetStreamKey β€” Gets stream key information for the specified ARN. BatchGetStreamKey β€” Performs GetStreamKey on multiple ARNs simultaneously. ListStreamKeys β€” Gets summary information about stream keys for the specified channel. DeleteStreamKey β€” Deletes the stream key for the specified ARN, so it can no longer be used to stream. Stream Endpoints GetStream β€” Gets information about the active (live) stream on a specified channel. ListStreams β€” Gets summary information about live streams in your account, in the AWS region where the API request is processed. StopStream β€” Disconnects the incoming RTMPS stream for the specified channel. Can be used in conjunction with DeleteStreamKey to prevent further streaming to a channel. PutMetadata β€” Inserts metadata into the active stream of the specified channel. A maximum of 5 requests per second per channel is allowed, each with a maximum 1 KB payload. (If 5 TPS is not sufficient for your needs, we recommend batching your data into a single PutMetadata call.) PlaybackKeyPair Endpoints For more information, see Setting Up Private Channels in the Amazon IVS User Guide. ImportPlaybackKeyPair β€” Imports the public portion of a new key pair and returns its arn and fingerprint. The privateKey can then be used to generate viewer authorization tokens, to grant viewers access to private channels (channels enabled for playback authorization). GetPlaybackKeyPair β€” Gets a specified playback authorization key pair and returns the arn and fingerprint. The privateKey held by the caller can be used to generate viewer authorization tokens, to grant viewers access to private channels. ListPlaybackKeyPairs β€” Gets summary information about playback key pairs. DeletePlaybackKeyPair β€” Deletes a specified authorization key pair. This invalidates future viewer tokens generated using the key pair’s privateKey. RecordingConfiguration Endpoints CreateRecordingConfiguration β€” Creates a new recording configuration, used to enable recording to Amazon S3. GetRecordingConfiguration β€” Gets the recording-configuration metadata for the specified ARN. ListRecordingConfigurations β€” Gets summary information about all recording configurations in your account, in the AWS region where the API request is processed. DeleteRecordingConfiguration β€” Deletes the recording configuration for the specified ARN. AWS Tags Endpoints TagResource β€” Adds or updates tags for the AWS resource with the specified ARN. UntagResource β€” Removes tags from the resource with the specified ARN. ListTagsForResource β€” Gets information about AWS tags for the specified ARN.

AWS IoT Fleet Hub

With Fleet Hub for AWS IoT Device Management you can build stand-alone web applications for monitoring the health of your device fleets. Fleet Hub for AWS IoT Device Management is in public preview and is subject to change.

Other APIs in the same category

Security Center

azure.com
API spec for Microsoft.Security (Azure Security Center) resource provider

Azure Log Analytics Query Packs

azure.com
Azure Log Analytics API reference for Query Packs management.

Amazon Forecast Service

Provides APIs for creating and managing Amazon Forecast resources.

AWS Comprehend Medical

Amazon Comprehend Medical extracts structured information from unstructured clinical text. Use these actions to gain insight in your documents.

Amazon CloudWatch Application Insights

Amazon CloudWatch Application Insights Amazon CloudWatch Application Insights is a service that helps you detect common problems with your applications. It enables you to pinpoint the source of issues in your applications (built with technologies such as Microsoft IIS, .NET, and Microsoft SQL Server), by providing key insights into detected problems. After you onboard your application, CloudWatch Application Insights identifies, recommends, and sets up metrics and logs. It continuously analyzes and correlates your metrics and logs for unusual behavior to surface actionable problems with your application. For example, if your application is slow and unresponsive and leading to HTTP 500 errors in your Application Load Balancer (ALB), Application Insights informs you that a memory pressure problem with your SQL Server database is occurring. It bases this analysis on impactful metrics and log errors.

Amazon CloudFront

Amazon CloudFront This is the Amazon CloudFront API Reference. This guide is for developers who need detailed information about CloudFront API actions, data types, and errors. For detailed information about CloudFront features, see the Amazon CloudFront Developer Guide.

AWS CodeCommit

AWS CodeCommit This is the AWS CodeCommit API Reference. This reference provides descriptions of the operations and data types for AWS CodeCommit API along with usage examples. You can use the AWS CodeCommit API to work with the following objects: Repositories, by calling the following: BatchGetRepositories, which returns information about one or more repositories associated with your AWS account. CreateRepository, which creates an AWS CodeCommit repository. DeleteRepository, which deletes an AWS CodeCommit repository. GetRepository, which returns information about a specified repository. ListRepositories, which lists all AWS CodeCommit repositories associated with your AWS account. UpdateRepositoryDescription, which sets or updates the description of the repository. UpdateRepositoryName, which changes the name of the repository. If you change the name of a repository, no other users of that repository can access it until you send them the new HTTPS or SSH URL to use. Branches, by calling the following: CreateBranch, which creates a branch in a specified repository. DeleteBranch, which deletes the specified branch in a repository unless it is the default branch. GetBranch, which returns information about a specified branch. ListBranches, which lists all branches for a specified repository. UpdateDefaultBranch, which changes the default branch for a repository. Files, by calling the following: DeleteFile, which deletes the content of a specified file from a specified branch. GetBlob, which returns the base-64 encoded content of an individual Git blob object in a repository. GetFile, which returns the base-64 encoded content of a specified file. GetFolder, which returns the contents of a specified folder or directory. PutFile, which adds or modifies a single file in a specified repository and branch. Commits, by calling the following: BatchGetCommits, which returns information about one or more commits in a repository. CreateCommit, which creates a commit for changes to a repository. GetCommit, which returns information about a commit, including commit messages and author and committer information. GetDifferences, which returns information about the differences in a valid commit specifier (such as a branch, tag, HEAD, commit ID, or other fully qualified reference). Merges, by calling the following: BatchDescribeMergeConflicts, which returns information about conflicts in a merge between commits in a repository. CreateUnreferencedMergeCommit, which creates an unreferenced commit between two branches or commits for the purpose of comparing them and identifying any potential conflicts. DescribeMergeConflicts, which returns information about merge conflicts between the base, source, and destination versions of a file in a potential merge. GetMergeCommit, which returns information about the merge between a source and destination commit. GetMergeConflicts, which returns information about merge conflicts between the source and destination branch in a pull request. GetMergeOptions, which returns information about the available merge options between two branches or commit specifiers. MergeBranchesByFastForward, which merges two branches using the fast-forward merge option. MergeBranchesBySquash, which merges two branches using the squash merge option. MergeBranchesByThreeWay, which merges two branches using the three-way merge option. Pull requests, by calling the following: CreatePullRequest, which creates a pull request in a specified repository. CreatePullRequestApprovalRule, which creates an approval rule for a specified pull request. DeletePullRequestApprovalRule, which deletes an approval rule for a specified pull request. DescribePullRequestEvents, which returns information about one or more pull request events. EvaluatePullRequestApprovalRules, which evaluates whether a pull request has met all the conditions specified in its associated approval rules. GetCommentsForPullRequest, which returns information about comments on a specified pull request. GetPullRequest, which returns information about a specified pull request. GetPullRequestApprovalStates, which returns information about the approval states for a specified pull request. GetPullRequestOverrideState, which returns information about whether approval rules have been set aside (overriden) for a pull request, and if so, the Amazon Resource Name (ARN) of the user or identity that overrode the rules and their requirements for the pull request. ListPullRequests, which lists all pull requests for a repository. MergePullRequestByFastForward, which merges the source destination branch of a pull request into the specified destination branch for that pull request using the fast-forward merge option. MergePullRequestBySquash, which merges the source destination branch of a pull request into the specified destination branch for that pull request using the squash merge option. MergePullRequestByThreeWay. which merges the source destination branch of a pull request into the specified destination branch for that pull request using the three-way merge option. OverridePullRequestApprovalRules, which sets aside all approval rule requirements for a pull request. PostCommentForPullRequest, which posts a comment to a pull request at the specified line, file, or request. UpdatePullRequestApprovalRuleContent, which updates the structure of an approval rule for a pull request. UpdatePullRequestApprovalState, which updates the state of an approval on a pull request. UpdatePullRequestDescription, which updates the description of a pull request. UpdatePullRequestStatus, which updates the status of a pull request. UpdatePullRequestTitle, which updates the title of a pull request. Approval rule templates, by calling the following: AssociateApprovalRuleTemplateWithRepository, which associates a template with a specified repository. After the template is associated with a repository, AWS CodeCommit creates approval rules that match the template conditions on every pull request created in the specified repository. BatchAssociateApprovalRuleTemplateWithRepositories, which associates a template with one or more specified repositories. After the template is associated with a repository, AWS CodeCommit creates approval rules that match the template conditions on every pull request created in the specified repositories. BatchDisassociateApprovalRuleTemplateFromRepositories, which removes the association between a template and specified repositories so that approval rules based on the template are not automatically created when pull requests are created in those repositories. CreateApprovalRuleTemplate, which creates a template for approval rules that can then be associated with one or more repositories in your AWS account. DeleteApprovalRuleTemplate, which deletes the specified template. It does not remove approval rules on pull requests already created with the template. DisassociateApprovalRuleTemplateFromRepository, which removes the association between a template and a repository so that approval rules based on the template are not automatically created when pull requests are created in the specified repository. GetApprovalRuleTemplate, which returns information about an approval rule template. ListApprovalRuleTemplates, which lists all approval rule templates in the AWS Region in your AWS account. ListAssociatedApprovalRuleTemplatesForRepository, which lists all approval rule templates that are associated with a specified repository. ListRepositoriesForApprovalRuleTemplate, which lists all repositories associated with the specified approval rule template. UpdateApprovalRuleTemplateDescription, which updates the description of an approval rule template. UpdateApprovalRuleTemplateName, which updates the name of an approval rule template. UpdateApprovalRuleTemplateContent, which updates the content of an approval rule template. Comments in a repository, by calling the following: DeleteCommentContent, which deletes the content of a comment on a commit in a repository. GetComment, which returns information about a comment on a commit. GetCommentReactions, which returns information about emoji reactions to comments. GetCommentsForComparedCommit, which returns information about comments on the comparison between two commit specifiers in a repository. PostCommentForComparedCommit, which creates a comment on the comparison between two commit specifiers in a repository. PostCommentReply, which creates a reply to a comment. PutCommentReaction, which creates or updates an emoji reaction to a comment. UpdateComment, which updates the content of a comment on a commit in a repository. Tags used to tag resources in AWS CodeCommit (not Git tags), by calling the following: ListTagsForResource, which gets information about AWS tags for a specified Amazon Resource Name (ARN) in AWS CodeCommit. TagResource, which adds or updates tags for a resource in AWS CodeCommit. UntagResource, which removes tags for a resource in AWS CodeCommit. Triggers, by calling the following: GetRepositoryTriggers, which returns information about triggers configured for a repository. PutRepositoryTriggers, which replaces all triggers for a repository and can be used to create or delete triggers. TestRepositoryTriggers, which tests the functionality of a repository trigger by sending data to the trigger target. For information about how to use AWS CodeCommit, see the AWS CodeCommit User Guide.

Amazon Relational Database Service

Amazon Relational Database Service Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizeable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions. For the alphabetical list of data types, see Data Types. For a list of common query parameters, see Common Parameters. For descriptions of the error codes, see Common Errors. Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces. For more information about how to use the Query API, see Using the Query API.

AWS Import/Export

AWS Import/Export Service AWS Import/Export accelerates transferring large amounts of data between the AWS cloud and portable storage devices that you mail to us. AWS Import/Export transfers data directly onto and off of your storage devices using Amazon's high-speed internal network and bypassing the Internet. For large data sets, AWS Import/Export is often faster than Internet transfer and more cost effective than upgrading your connectivity.

AWS Service Catalog

AWS Service Catalog AWS Service Catalog enables organizations to create and manage catalogs of IT services that are approved for AWS. To get the most out of this documentation, you should be familiar with the terminology discussed in AWS Service Catalog Concepts.

AWS Application Cost Profiler

This reference provides descriptions of the AWS Application Cost Profiler API. The AWS Application Cost Profiler API provides programmatic access to view, create, update, and delete application cost report definitions, as well as to import your usage data into the Application Cost Profiler service. For more information about using this service, see the AWS Application Cost Profiler User Guide.

Amazon Macie

Amazon Macie Classic Amazon Macie Classic is a security service that uses machine learning to automatically discover, classify, and protect sensitive data in AWS. Macie Classic recognizes sensitive data such as personally identifiable information (PII) or intellectual property, and provides you with dashboards and alerts that give visibility into how this data is being accessed or moved. For more information, see the Amazon Macie Classic User Guide.