Mock sample for your project: Amazon CloudWatch Application Insights API

Integrate with "Amazon CloudWatch Application Insights API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon CloudWatch Application Insights

amazonaws.com

Version: 2018-11-25


Use this API in your project

Speed up your application development by using "Amazon CloudWatch Application Insights API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
It also improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Amazon CloudWatch Application Insights Amazon CloudWatch Application Insights is a service that helps you detect common problems with your applications. It enables you to pinpoint the source of issues in your applications (built with technologies such as Microsoft IIS, .NET, and Microsoft SQL Server), by providing key insights into detected problems. After you onboard your application, CloudWatch Application Insights identifies, recommends, and sets up metrics and logs. It continuously analyzes and correlates your metrics and logs for unusual behavior to surface actionable problems with your application. For example, if your application is slow and unresponsive and leading to HTTP 500 errors in your Application Load Balancer (ALB), Application Insights informs you that a memory pressure problem with your SQL Server database is occurring. It bases this analysis on impactful metrics and log errors.

Other APIs by amazonaws.com

AWS OpsWorks

AWS OpsWorks Welcome to the AWS OpsWorks Stacks API Reference. This guide provides descriptions, syntax, and usage examples for AWS OpsWorks Stacks actions and data types, including common parameters and error codes. AWS OpsWorks Stacks is an application management service that provides an integrated experience for overseeing the complete application lifecycle. For information about this product, go to the AWS OpsWorks details page. SDKs and CLI The most common way to use the AWS OpsWorks Stacks API is by using the AWS Command Line Interface (CLI) or by using one of the AWS SDKs to implement applications in your preferred language. For more information, see: AWS CLI AWS SDK for Java AWS SDK for .NET AWS SDK for PHP 2 AWS SDK for Ruby AWS SDK for Node.js AWS SDK for Python(Boto) Endpoints AWS OpsWorks Stacks supports the following endpoints, all HTTPS. You must connect to one of the following endpoints. Stacks can only be accessed or managed within the endpoint in which they are created. opsworks.us-east-1.amazonaws.com opsworks.us-east-2.amazonaws.com opsworks.us-west-1.amazonaws.com opsworks.us-west-2.amazonaws.com opsworks.ca-central-1.amazonaws.com (API only; not available in the AWS console) opsworks.eu-west-1.amazonaws.com opsworks.eu-west-2.amazonaws.com opsworks.eu-west-3.amazonaws.com opsworks.eu-central-1.amazonaws.com opsworks.ap-northeast-1.amazonaws.com opsworks.ap-northeast-2.amazonaws.com opsworks.ap-south-1.amazonaws.com opsworks.ap-southeast-1.amazonaws.com opsworks.ap-southeast-2.amazonaws.com opsworks.sa-east-1.amazonaws.com Chef Versions When you call CreateStack, CloneStack, or UpdateStack we recommend you use the ConfigurationManager parameter to specify the Chef version. The recommended and default value for Linux stacks is currently 12. Windows stacks use Chef 12.2. For more information, see Chef Versions. You can specify Chef 12, 11.10, or 11.4 for your Linux stack. We recommend migrating your existing Linux stacks to Chef 12 as soon as possible.

Amazon Lex Model Building V2

Amazon Data Lifecycle Manager

Amazon Data Lifecycle Manager With Amazon Data Lifecycle Manager, you can manage the lifecycle of your Amazon Web Services resources. You create lifecycle policies, which are used to automate operations on the specified resources. Amazon DLM supports Amazon EBS volumes and snapshots. For information about using Amazon DLM with Amazon EBS, see Automating the Amazon EBS Snapshot Lifecycle in the Amazon EC2 User Guide.

Amazon CodeGuru Profiler

This section provides documentation for the Amazon CodeGuru Profiler API operations. Amazon CodeGuru Profiler collects runtime performance data from your live applications, and provides recommendations that can help you fine-tune your application performance. Using machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of code and suggest ways you can improve efficiency and remove CPU bottlenecks. Amazon CodeGuru Profiler provides different visualizations of profiling data to help you identify what code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU utilization. Amazon CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM) languages and Python. While CodeGuru Profiler supports both visualizations and recommendations for applications written in Java, it can also generate visualizations and a subset of recommendations for applications written in other JVM languages and Python. For more information, see What is Amazon CodeGuru Profiler in the Amazon CodeGuru Profiler User Guide.

Amazon CloudSearch

Amazon CloudSearch Configuration Service You use the Amazon CloudSearch configuration service to create, configure, and manage search domains. Configuration service requests are submitted using the AWS Query protocol. AWS Query requests are HTTP or HTTPS requests submitted via HTTP GET or POST with a query parameter named Action. The endpoint for configuration service requests is region-specific: cloudsearch. region.amazonaws.com. For example, cloudsearch.us-east-1.amazonaws.com. For a current list of supported regions and endpoints, see Regions and Endpoints.

Amazon Elasticsearch Service

Amazon Elasticsearch Configuration Service Use the Amazon Elasticsearch Configuration API to create, configure, and manage Elasticsearch domains. For sample code that uses the Configuration API, see the Amazon Elasticsearch Service Developer Guide. The guide also contains sample code for sending signed HTTP requests to the Elasticsearch APIs. The endpoint for configuration service requests is region-specific: es. region.amazonaws.com. For example, es.us-east-1.amazonaws.com. For a current list of supported regions and endpoints, see Regions and Endpoints.

AWS Lambda

Lambda Overview This is the Lambda API Reference. The Lambda Developer Guide provides additional information. For the service overview, see What is Lambda, and for information about how the service works, see Lambda: How it Works in the Lambda Developer Guide.

AWS Data Pipeline

AWS Data Pipeline configures and manages a data-driven workflow called a pipeline. AWS Data Pipeline handles the details of scheduling and ensuring that data dependencies are met so that your application can focus on processing the data. AWS Data Pipeline provides a JAR implementation of a task runner called AWS Data Pipeline Task Runner. AWS Data Pipeline Task Runner provides logic for common data management scenarios, such as performing database queries and running data analysis using Amazon Elastic MapReduce (Amazon EMR). You can use AWS Data Pipeline Task Runner as your task runner, or you can write your own task runner to provide custom data management. AWS Data Pipeline implements two main sets of functionality. Use the first set to create a pipeline and define data sources, schedules, dependencies, and the transforms to be performed on the data. Use the second set in your task runner application to receive the next task ready for processing. The logic for performing the task, such as querying the data, running data analysis, or converting the data from one format to another, is contained within the task runner. The task runner performs the task assigned to it by the web service, reporting progress to the web service as it does so. When the task is done, the task runner reports the final success or failure of the task to the web service.

Synthetics

Amazon CloudWatch Synthetics You can use Amazon CloudWatch Synthetics to continually monitor your services. You can create and manage canaries, which are modular, lightweight scripts that monitor your endpoints and APIs from the outside-in. You can set up your canaries to run 24 hours a day, once per minute. The canaries help you check the availability and latency of your web services and troubleshoot anomalies by investigating load time data, screenshots of the UI, logs, and metrics. The canaries seamlessly integrate with CloudWatch ServiceLens to help you trace the causes of impacted nodes in your applications. For more information, see Using ServiceLens to Monitor the Health of Your Applications in the Amazon CloudWatch User Guide. Before you create and manage canaries, be aware of the security considerations. For more information, see Security Considerations for Synthetics Canaries.

Amazon CloudWatch

Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.

Amazon Inspector

Amazon Inspector Amazon Inspector enables you to analyze the behavior of your AWS resources and to identify potential security issues. For more information, see Amazon Inspector User Guide.
IoT IoT provides secure, bi-directional communication between Internet-connected devices (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. You can discover your custom IoT-Data endpoint to communicate with, configure rules for data processing and integration with other services, organize resources associated with each device (Registry), configure logging, and create and manage policies and credentials to authenticate devices. The service endpoints that expose this API are listed in Amazon Web Services IoT Core Endpoints and Quotas. You must use the endpoint for the region that has the resources you want to access. The service name used by Amazon Web Services Signature Version 4 to sign the request is: execute-api. For more information about how IoT works, see the Developer Guide. For information about how to use the credentials provider for IoT, see Authorizing Direct Calls to Amazon Web Services Services.

Other APIs in the same category

AWS Direct Connect

Direct Connect links your internal network to an Direct Connect location over a standard Ethernet fiber-optic cable. One end of the cable is connected to your router, the other to an Direct Connect router. With this connection in place, you can create virtual interfaces directly to the Cloud (for example, to Amazon EC2 and Amazon S3) and to Amazon VPC, bypassing Internet service providers in your network path. A connection provides access to all Regions except the China (Beijing) and (China) Ningxia Regions. Amazon Web Services resources in the China Regions can only be accessed through locations associated with those Regions.

AWS Systems Manager Incident Manager Contacts

Systems Manager Incident Manager is an incident management console designed to help users mitigate and recover from incidents affecting their Amazon Web Services-hosted applications. An incident is any unplanned interruption or reduction in quality of services. Incident Manager increases incident resolution by notifying responders of impact, highlighting relevant troubleshooting data, and providing collaboration tools to get services back up and running. To achieve the primary goal of reducing the time-to-resolution of critical incidents, Incident Manager automates response plans and enables responder team escalation.

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

Amazon Timestream Query

AWS Fault Injection Simulator

AWS Fault Injection Simulator is a managed service that enables you to perform fault injection experiments on your AWS workloads. For more information, see the AWS Fault Injection Simulator User Guide.

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for favorites.

AWS Shield

Shield Advanced This is the Shield Advanced API Reference. This guide is for developers who need detailed information about the Shield Advanced API actions, data types, and errors. For detailed information about WAF and Shield Advanced features and an overview of how to use the WAF and Shield Advanced APIs, see the WAF and Shield Developer Guide.

FabricAdminClient

azure.com
MAC address pool operation endpoints and objects.

ApiManagementClient

azure.com
Use these REST APIs to get the analytics reports associated with your Azure API Management deployment.

Amazon Elastic Block Store

You can use the Amazon Elastic Block Store (Amazon EBS) direct APIs to create Amazon EBS snapshots, write data directly to your snapshots, read data on your snapshots, and identify the differences or changes between two snapshots. If you’re an independent software vendor (ISV) who offers backup services for Amazon EBS, the EBS direct APIs make it more efficient and cost-effective to track incremental changes on your Amazon EBS volumes through snapshots. This can be done without having to create new volumes from snapshots, and then use Amazon Elastic Compute Cloud (Amazon EC2) instances to compare the differences. You can create incremental snapshots directly from data on-premises into volumes and the cloud to use for quick disaster recovery. With the ability to write and read snapshots, you can write your on-premises data to an snapshot during a disaster. Then after recovery, you can restore it back to Amazon Web Services or on-premises from the snapshot. You no longer need to build and maintain complex mechanisms to copy data to and from Amazon EBS. This API reference provides detailed information about the actions, data types, parameters, and errors of the EBS direct APIs. For more information about the elements that make up the EBS direct APIs, and examples of how to use them effectively, see Accessing the Contents of an Amazon EBS Snapshot in the Amazon Elastic Compute Cloud User Guide. For more information about the supported Amazon Web Services Regions, endpoints, and service quotas for the EBS direct APIs, see Amazon Elastic Block Store Endpoints and Quotas in the Amazon Web Services General Reference.

AuthorizationManagementClient

azure.com
Role based access control provides you a way to apply granular level policy administration down to individual resources or resource groups. These operations enable you to manage role assignments. A role assignment grants access to Azure Active Directory users.

Amazon ElastiCache

Amazon ElastiCache Amazon ElastiCache is a web service that makes it easier to set up, operate, and scale a distributed cache in the cloud. With ElastiCache, customers get all of the benefits of a high-performance, in-memory cache with less of the administrative burden involved in launching and managing a distributed cache. The service makes setup, scaling, and cluster failure handling much simpler than in a self-managed cache deployment. In addition, through integration with Amazon CloudWatch, customers get enhanced visibility into the key performance statistics associated with their cache and can receive alarms if a part of their cache runs hot.