Mock sample for your project: AWS Amplify API

Integrate with "AWS Amplify API" from amazonaws.com in no time with Mockoon's ready to use mock sample

AWS Amplify

amazonaws.com

Version: 2017-07-25


Use this API in your project

Integrate third-party APIs faster by using "AWS Amplify API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

Amplify enables developers to develop and deploy cloud-powered mobile and web apps. The Amplify Console provides a continuous delivery and hosting service for web applications. For more information, see the Amplify Console User Guide. The Amplify Framework is a comprehensive set of SDKs, libraries, tools, and documentation for client app development. For more information, see the Amplify Framework.

Other APIs by amazonaws.com

Amazon S3 on Outposts

Amazon S3 on Outposts provides access to S3 on Outposts operations.

Amazon CodeGuru Profiler

This section provides documentation for the Amazon CodeGuru Profiler API operations. Amazon CodeGuru Profiler collects runtime performance data from your live applications, and provides recommendations that can help you fine-tune your application performance. Using machine learning algorithms, CodeGuru Profiler can help you find your most expensive lines of code and suggest ways you can improve efficiency and remove CPU bottlenecks. Amazon CodeGuru Profiler provides different visualizations of profiling data to help you identify what code is running on the CPU, see how much time is consumed, and suggest ways to reduce CPU utilization. Amazon CodeGuru Profiler currently supports applications written in all Java virtual machine (JVM) languages and Python. While CodeGuru Profiler supports both visualizations and recommendations for applications written in Java, it can also generate visualizations and a subset of recommendations for applications written in other JVM languages and Python. For more information, see What is Amazon CodeGuru Profiler in the Amazon CodeGuru Profiler User Guide.

AWS IoT Things Graph

AWS IoT Things Graph AWS IoT Things Graph provides an integrated set of tools that enable developers to connect devices and services that use different standards, such as units of measure and communication protocols. AWS IoT Things Graph makes it possible to build IoT applications with little to no code by connecting devices and services and defining how they interact at an abstract level. For more information about how AWS IoT Things Graph works, see the User Guide.

AWS Data Pipeline

AWS Data Pipeline configures and manages a data-driven workflow called a pipeline. AWS Data Pipeline handles the details of scheduling and ensuring that data dependencies are met so that your application can focus on processing the data. AWS Data Pipeline provides a JAR implementation of a task runner called AWS Data Pipeline Task Runner. AWS Data Pipeline Task Runner provides logic for common data management scenarios, such as performing database queries and running data analysis using Amazon Elastic MapReduce (Amazon EMR). You can use AWS Data Pipeline Task Runner as your task runner, or you can write your own task runner to provide custom data management. AWS Data Pipeline implements two main sets of functionality. Use the first set to create a pipeline and define data sources, schedules, dependencies, and the transforms to be performed on the data. Use the second set in your task runner application to receive the next task ready for processing. The logic for performing the task, such as querying the data, running data analysis, or converting the data from one format to another, is contained within the task runner. The task runner performs the task assigned to it by the web service, reporting progress to the web service as it does so. When the task is done, the task runner reports the final success or failure of the task to the web service.

AWS IoT SiteWise

Welcome to the IoT SiteWise API Reference. IoT SiteWise is an Amazon Web Services service that connects Industrial Internet of Things (IIoT) devices to the power of the Amazon Web Services Cloud. For more information, see the IoT SiteWise User Guide. For information about IoT SiteWise quotas, see Quotas in the IoT SiteWise User Guide.

AWS CodeBuild

CodeBuild CodeBuild is a fully managed build service in the cloud. CodeBuild compiles your source code, runs unit tests, and produces artifacts that are ready to deploy. CodeBuild eliminates the need to provision, manage, and scale your own build servers. It provides prepackaged build environments for the most popular programming languages and build tools, such as Apache Maven, Gradle, and more. You can also fully customize build environments in CodeBuild to use your own build tools. CodeBuild scales automatically to meet peak build requests. You pay only for the build time you consume. For more information about CodeBuild, see the CodeBuild User Guide.

AWS Compute Optimizer

Compute Optimizer is a service that analyzes the configuration and utilization metrics of your Amazon Web Services compute resources, such as Amazon EC2 instances, Amazon EC2 Auto Scaling groups, Lambda functions, and Amazon EBS volumes. It reports whether your resources are optimal, and generates optimization recommendations to reduce the cost and improve the performance of your workloads. Compute Optimizer also provides recent utilization metric data, in addition to projected utilization metric data for the recommendations, which you can use to evaluate which recommendation provides the best price-performance trade-off. The analysis of your usage patterns can help you decide when to move or resize your running resources, and still meet your performance and capacity requirements. For more information about Compute Optimizer, including the required permissions to use the service, see the Compute Optimizer User Guide.

AWS CloudFormation

AWS CloudFormation CloudFormation allows you to create and manage Amazon Web Services infrastructure deployments predictably and repeatedly. You can use CloudFormation to leverage Amazon Web Services products, such as Amazon Elastic Compute Cloud, Amazon Elastic Block Store, Amazon Simple Notification Service, Elastic Load Balancing, and Auto Scaling to build highly-reliable, highly scalable, cost-effective applications without creating or configuring the underlying Amazon Web Services infrastructure. With CloudFormation, you declare all of your resources and dependencies in a template file. The template defines a collection of resources as a single unit called a stack. CloudFormation creates and deletes all member resources of the stack together and manages all dependencies between the resources for you. For more information about CloudFormation, see the CloudFormation Product Page. CloudFormation makes use of other Amazon Web Services products. If you need additional technical information about a specific Amazon Web Services product, you can find the product's technical documentation at docs.aws.amazon.com .

AWS Identity and Access Management

Identity and Access Management Identity and Access Management (IAM) is a web service for securely controlling access to Amazon Web Services services. With IAM, you can centrally manage users, security credentials such as access keys, and permissions that control which Amazon Web Services resources users and applications can access. For more information about IAM, see Identity and Access Management (IAM) and the Identity and Access Management User Guide.

AWS IoT Greengrass V2

IoT Greengrass brings local compute, messaging, data management, sync, and ML inference capabilities to edge devices. This enables devices to collect and analyze data closer to the source of information, react autonomously to local events, and communicate securely with each other on local networks. Local devices can also communicate securely with Amazon Web Services IoT Core and export IoT data to the Amazon Web Services Cloud. IoT Greengrass developers can use Lambda functions and components to create and deploy applications to fleets of edge devices for local operation. IoT Greengrass Version 2 provides a new major version of the IoT Greengrass Core software, new APIs, and a new console. Use this API reference to learn how to use the IoT Greengrass V2 API operations to manage components, manage deployments, and core devices. For more information, see What is IoT Greengrass? in the IoT Greengrass V2 Developer Guide.

Amazon FSx

Amazon FSx is a fully managed service that makes it easy for storage and application administrators to launch and use shared file storage.

AWS CodeStar connections

AWS CodeStar Connections This AWS CodeStar Connections API Reference provides descriptions and usage examples of the operations and data types for the AWS CodeStar Connections API. You can use the connections API to work with connections and installations. Connections are configurations that you use to connect AWS resources to external code repositories. Each connection is a resource that can be given to services such as CodePipeline to connect to a third-party repository such as Bitbucket. For example, you can add the connection in CodePipeline so that it triggers your pipeline when a code change is made to your third-party code repository. Each connection is named and associated with a unique ARN that is used to reference the connection. When you create a connection, the console initiates a third-party connection handshake. Installations are the apps that are used to conduct this handshake. For example, the installation for the Bitbucket provider type is the Bitbucket app. When you create a connection, you can choose an existing installation or create one. When you want to create a connection to an installed provider type such as GitHub Enterprise Server, you create a host for your connections. You can work with connections by calling: CreateConnection, which creates a uniquely named connection that can be referenced by services such as CodePipeline. DeleteConnection, which deletes the specified connection. GetConnection, which returns information about the connection, including the connection status. ListConnections, which lists the connections associated with your account. You can work with hosts by calling: CreateHost, which creates a host that represents the infrastructure where your provider is installed. DeleteHost, which deletes the specified host. GetHost, which returns information about the host, including the setup status. ListHosts, which lists the hosts associated with your account. You can work with tags in AWS CodeStar Connections by calling the following: ListTagsForResource, which gets information about AWS tags for a specified Amazon Resource Name (ARN) in AWS CodeStar Connections. TagResource, which adds or updates tags for a resource in AWS CodeStar Connections. UntagResource, which removes tags for a resource in AWS CodeStar Connections. For information about how to use AWS CodeStar Connections, see the Developer Tools User Guide.

Other APIs in the same category

AWS Data Exchange

AWS Data Exchange is a service that makes it easy for AWS customers to exchange data in the cloud. You can use the AWS Data Exchange APIs to create, update, manage, and access file-based data set in the AWS Cloud. As a subscriber, you can view and access the data sets that you have an entitlement to through a subscription. You can use the APIS to download or copy your entitled data sets to Amazon S3 for use across a variety of AWS analytics and machine learning services. As a provider, you can create and manage your data sets that you would like to publish to a product. Being able to package and provide your data sets into products requires a few steps to determine eligibility. For more information, visit the AWS Data Exchange User Guide. A data set is a collection of data that can be changed or updated over time. Data sets can be updated using revisions, which represent a new version or incremental change to a data set. A revision contains one or more assets. An asset in AWS Data Exchange is a piece of data that can be stored as an Amazon S3 object. The asset can be a structured data file, an image file, or some other data file. Jobs are asynchronous import or export operations used to create or copy assets.

AWS Glue DataBrew

Glue DataBrew is a visual, cloud-scale data-preparation service. DataBrew simplifies data preparation tasks, targeting data issues that are hard to spot and time-consuming to fix. DataBrew empowers users of all technical levels to visualize the data and perform one-click data transformations, with no coding required.

ManagementLinkClient

azure.com
Azure resources can be linked together to form logical relationships. You can establish links between resources belonging to different resource groups. However, all the linked resources must belong to the same subscription. Each resource can be linked to 50 other resources. If any of the linked resources are deleted or moved, the link owner must clean up the remaining link.

Microsoft NetApp

azure.com
Microsoft NetApp Azure Resource Provider specification

Azure DevOps

azure.com
Azure DevOps Resource Provider

DevSpacesManagement

azure.com
Dev Spaces REST API

Azure Location Based Services Resource Provider

azure.com
Resource Provider

HDInsightManagementClient

azure.com
The HDInsight Management Client.

DevTestLabsClient

azure.com
The DevTest Labs Client.

Anomaly Detector Client

azure.com
The Anomaly Detector API detects anomalies automatically in time series data. It supports two kinds of mode, one is for stateless using, another is for stateful using. In stateless mode, there are three functionalities. Entire Detect is for detecting the whole series with model trained by the time series, Last Detect is detecting last point with model trained by points before. ChangePoint Detect is for detecting trend changes in time series. In stateful mode, user can store time series, the stored time series will be used for detection anomalies. Under this mode, user can still use the above three functionalities by only giving a time range without preparing time series in client side. Besides the above three functionalities, stateful model also provide group based detection and labeling service. By leveraging labeling service user can provide labels for each detection result, these labels will be used for retuning or regenerating detection models. Inconsistency detection is a kind of group based detection, this detection will find inconsistency ones in a set of time series. By using anomaly detector service, business customers can discover incidents and establish a logic flow for root cause analysis.

CognitiveServicesManagementClient

azure.com
Cognitive Services Management Client

GuestConfiguration

azure.com